DOI: 10.30911/0207-4028-2025-44-1-19-34

УДК 553.06(571.65)

РУДОПРОЯВЛЕНИЕ ВЕТВИСТОЕ – ПРИМЕР СКАРНОВОЙ РЬ-Zn МИНЕРАЛИЗАЦИИ ОХОТСКО-ЧУКОТСКОГО ВУЛКАНОГЕННОГО ПОЯСА (СЕВЕРО-ВОСТОК АЗИИ)

Е.Е. Колова, А.Н. Глухов, М.А. Малиновский

Северо-Восточный комплексный научно-исследовательский институт им. Н.А. Шило ДВО РАН, Магадан, Россия; e-mail: gluhov76@list.ru

Поступила в редакцию 14 августа 2023 г.

Охарактеризовано рудопроявление Ветвистое, расположенное в Охотском сегменте Охотско-Чукотского вулканогенного пояса. Рудное поле приурочено к экзоконтакту крупной интрузии гранитоидов позднемелового возраста, сложено юрскими осадочными породами, в которых по прослоям известковистых песчаников развиты гранат-пироксеновые скарны с Pb-Zn минерализацией. На них наложены серициткварцевые березиты с вкрапленным Au-Ag-Bi-Te оруденением. Руды формировались из изначально высокотемпературных (600 °C) и высококонцентрированных (29–20 мас. % экв. NaCl) гидротермальных растворов-рассолов преимущественно CaCl и LiCl состава, насыщенных газовой фазой, на фоне вскипания и периодического разбавления флюида (до 1 мас. % экв. NaCl), изменений фугитивности серы, кислорода, теллура и pH. Отличия геологического строения и состава рудопроявления Ветвистое от «классических» скарновых Pb-Zn месторождений обусловлены существенно меньшим развитием карбонатных пород в рудовмещающем разрезе, а также наложением поздних Au-Ag-Bi-Te минеральных парагенезисов.

Ключевые слова: скарны, Pb-Zn минерализация, граниты, высокотемпературный, Охотско-Чукотский вулканический пояс.

введение

Скарновые полиметаллические месторождения широко распространены в мире, являясь важным источником Pb и Zn. Наиболее известными примерами объектов такого типа являются Николаевское (Россия, [19]), Алтын-Топкан (Таджикистан, [17]), Мадан-Чипровцы (Болгария, [2]), Руда-Баня (Венгрия, [2]), Сан-Мартин (Мексика, [31]), Табаексан (Корея, [31]). Все они приурочены к окраинно-континентальным вулкано-плутоническим поясам преимущественно мезозой-кайнозойского возраста. В пределах Тихоокеанской окраины Азии известные скарновые Pb-Zn месторождения сконцентрированы на юге Приморья и на Корейском полуострове. На всем протяжении крупнейшей окраино-континентальной дуги Азии – Охотско-Чукотского вулканогенного пояса (ОЧВП) не известно ни одного месторождения этого типа, при огромном (сотни) количестве скарновых Pb-Zn рудопроявлений и пунктов минерализации, которые кратко охарактеризованы в единичных публикациях [3, 9, 24]. Золотоносные скарны являются важным генетическим типом месторождений золота. В нашей стране наиболее известны Синюхинское (Горный Алтай) [5] и Тардан (Тува) [10]. Примеры комплексного Pb-Zn-(Au-Ag) оруденения в скарнах представляют интерес в контексте выяснения взаимоотношений минерализации различного состава в процессе эволюции скарновой рудно-магматической системы (PMC). В данной статье мы попытаемся внести вклад в решение обеих задач – дать характеристику достаточно хорошо изученного горно-буровыми работами скарнового объекта ОЧВП и установить соотношения сульфидно-полиметаллических и золото-серебряных минеральных парагенезисов в его рудах.

Рудопроявление Ветвистое расположено в Магаданской области, в 260 км к северо-востоку от г. Магадан. Данный отрезок Охотского сегмента Охотско-Чаунской металлогенической провинции [22], включающей, помимо Охотско-Чукотского Удско-Мургальский вулканогенный пояс [7], характеризуется достаточно высокой насыщенностью рудными объектами: здесь располагаются Au-Ag месторождения Джульетта и Нявленга, молибденовое Хакандинское, связанные с меловыми вулкано-плутоническими комплексами. Фундаментом для последних являются терригенные шельфовые и турбидитовые комплексы пермского, триасового и юрского возрастов, относимые к Вилигинскому террейну – фрагменту позднепермско-юрского задугового бассейна [7]. Ранее рудопроявление Ветвистое кратко было охарактеризовано в публикациях как золото-сульфидное [13, 22, 23]. Объект был выявлен при проведении опережающих литохимических поисков масштаба 1:50 000 (П.Д. Левин, 1993 г.); в 1996–1998 и 2005–2010 гг. на нем ОАО «Дукатская горно-геологическая компания» по заказу ЦНИГРИ проводили поисковые работы (А.Э. Ливач и др., 1996 г.: В.И. Лесников и др., 2009 г.). Фактический полевой материал, положенный в основу данного исследования, был собран авторами при проведении полевых поисковых и тематических работ в 2009–2012 гг.

МЕТОДИКА ИССЛЕДОВАНИЙ

Основная часть исследований проведена на базе лаборатории петрологии, изотопной геохронологии и рудообразования СВКНИИ ДВО РАН и в Центре коллективного пользования СВКНИИ ДВО РАН. Минералогический и петрографический анализ выполнены в соответствии с классическими методиками посредством микроскопов Axioplan Imaging и Leitz, укомплектованных фото- и видеорегистраторами. Химические составы основных рудных минералов установлены с помощью рентгеновского электронно-зондового микроанализатора Camebax с использованием ЭДС-детектора Xmax-50 фирмы Oxford Instruments и программного обеспечения Aztec, в режиме Point ID, с ускоряющим напряжением 20 кВ, при диаметре излучающей области около 4 мкм. Калибровка прибора проводилась на стандарте меди. Предел обнаружения элементов составляет 0.3 вес. %.

Силикатный анализ выполнялся на рентгенофлуоресцентных спектрометрах СРМ-25 и VRA-30 по методикам КХА 165/2009, № 181-РС, № 212-РС, № 308-РС.

Содержания рудных и редкоземельных элементов определялись методом ICP-MS в Инновационноаналитическом центре ИТиГ ДВО РАН (г. Хабаровск) на масс-спектрометре с ионизацией в индуктивносвязанной плазме ICP-MS Elan 9000. Дополнительно содержания Au, Ag. Cu, Pb, Zn определялись в ЦКП СВКНИИ ДВО РАН атомно-абсорбционным анализом на спектрофотометре HITACHI 180-70.

Измерение изотопных соотношений серы проведено на изотопном масс-спектрометре Finnigan MAT 253 в ДВГИ ДВО РАН.

Микротермометрические исследования флюидных включений (ФВ) выполнены в СВКНИИ ДВО РАН с использованием измерительного комплекса на основе микротермокамеры THMSG-600 фирмы Linkam, микроскопа Motic, снабженного длиннофокусным объективом 50× фирмы Olimpus и видеокамеры Moticam solution 3 Мрх. Отнесение ФВ к генетическим типам и измерения проводились в соответствии с имеющимися методиками [12, 16, 18, 27]. Солевой состав растворов и их концентрация определялись методом криометрии, согласно экспериментальным данным [4, 15, 27]. Плотность флюида и давления рассчитывались с помощью программы FLINCOR [28, 37]. Определение состава газовых и твердых фаз ФВ выполнено в ДВГИ ДВО РАН на спектрометре комбинационного рассеяния LabRamHR 800 (Horiba Scientific) в широком спектральном диапазоне 150–3800 см⁻¹, с возбуждающей линей 514 нм He-Ne лазера и спектральной шириной щели 2 см⁻¹ (аналитик Е.Е. Колова). Разложение сложных контуров проведено с помощью программы Origin 7.5 с использованием данных [29].

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

Рудопроявление Ветвистое располагается в зоне влияния Килгана-Буксундинского глубинного разлома северо-восточного простирания, контролирующего размещение позднемеловых магматических образований и являющегося структурным элементом Охотско-Чукотского вулканогенного пояса. Оно входит в состав крупного металлогенического ареала, приуроченного к сочленению Яно-Колымской и Охотско-Чаунской провинций, обособляемого И.Н. Котляром с соавторами [14] как Буюндино-Сугойская рудоконтролирующая площадь, которая отличается уникальным для Северо-Востока Азии сочетанием разнотипного (Au-Ag, Sn, Mo, Pb-Zn) оруденения. Другой важной специфической чертой Балыгычано-Сугойской площади является отсутствие позднеюрских и раннемеловых интрузивных комплексов [14].

Рудопроявление приурочено к восточному флангу Мевчанской интрузивно-купольной структуры, в ядре которой обнажены гранитоиды одноименного массива (рис. 1). Рамой для них являются триасовоюрские терригенные и карбонатно-терригенные отложения, а также вулканиты раннего и позднего мела. Непосредственно на площади рудопроявления стратифицированные образования представлены раннеюрскими песчаниками, алевролитами, аргиллитами с прослоями туффитов, туфопесчаников и глинистых известняков. В аргиллитах часто встречаются карбонатные конкреции; среди песчаников многочисленны прослои известковистых разновидностей с остатками монотисов. Осадочные толщи в пределах рудопроявления залегают моноклинально с падением на юговосток под углами 20-30°. Они прорваны дайками и мелкими штоками диоритов, кварцевых диоритов, диоритовых порфиритов, андезитов и габбро.

Рис. 1. Геологический план рудопроявления Ветвистое.

1 – четвертичные аллювиальные отложения; 2 – раннеюрские песчаники, известковистые песчаники, алевролиты, глинистые известняки, стрелка указывает направление оси синклинали; 3 – раннемеловые диориты, диоритовые порфириты, кварцевые диориты; 4 – позднемеловые граниты и лейкограниты; 5 – дайки позднемеловых андезитов и габброидов; 6 – разломы; 7 – роговики; 8 – березиты; 9 – рудные тела; 10 – линия разреза рис. 3.

Мевчанский массив имеет площадь выходов 150 км² и крутопадающие контакты. В его составе преобладают роговообманково-биотитовые субщелочные лейкограниты и гранит-порфиры; помимо них известны диориты, габбродиориты, кварцевые диориты, диоритовые порфириты, гранодиориты, аплиты. По химическому составу породы высокоглиноземистые, умеренно-щелочные калиево-натриевые (рис. 2); на классификационных диаграммах точки соответствующих им анализов располагаются на границе полей гранитоидов вулканических дуг и внутриплитных. Позднемеловой возраст гранитоидов принят по прорыванию ими эффузивов раннего мела; по данным В.В. Акинина и др. [1], U-Pb возраст конгалинского гранит-гранодиоритового комплекса, к которому относится Мевчанский интрузив, составляет 87.8 ± 1.2 млн лет. Наиболее молодыми образованиями являются дайки андезитов и габброидов, прорывающие как осадочные толщи, так и гранитоиды. Разрывные нарушения на площади рудопроявления имеют главным образом северо-восточное (региональное) и северо-западное (согласное с ориентировкой контакта интрузивного массива) простирание.

Все осадочные породы на площади рудопроявления в той или иной степени претерпели контактовый метаморфизм; в зоне ближнего экзоконтакта гранитоидов они превращены в кварцевые, биотит-кварцевые и полевошпат-кварцевые роговики с порфиробластами кордиерита. Гидротермально-метасоматические образования на площади рудопроявления развиты достаточно широко и представлены пропилитами, скарнами, березитами и грейзенами.

Пропилиты распространены на всей площади рудопроявления и представлены биотит-актинолитовой, актинолит-эпидотовой и клиноцоизит-альбитхлоритовой минеральными ассоциациями.

Скарны развиты по прослоям известковистых песчаников и глинистых известняков, к ним приу-

Рис. 2. Классификационные диаграммы для гранитоидных интрузий рудопроявления Ветвистое.

a–в – петрохимические: *a* – отношение К₂O–SiO₂ [35], *б* – отношение FeOt/MgO [33], *в* – отношение (Al/Na+K) – (Al/Ca+Na+K) [31]; *г*–*е* – геотектонические: *г* – отношение FeO[t]–MgO [31], *д* – Rb–Y+Nb [34], *e* – Nb–Y [34]. На диаграммах: IAG – гранитоиды островных дуг, CAG – гранитоиды континентальных дуг, CCG – гранитоиды обстановок континентальной коллизии, POG – посторогенные гранитоиды, Sin-COLG – коллизионные граниты; WPG – внутриплитные граниты; VAG – граниты вулканических дуг; ORG – граниты островов и рифтовых обстановок. Графические условные обозначения: *l* – диориты; *2* – кварцевые диориты; *3* – граниты; *4* – гранодиориты.

рочена продуктивная Pb-Zn минерализация. Морфология тел скарнов стратоидная, согласная напластованию осадочных пород; мощность не превышает первых метров. Они сложены гранатом (гроссуляральмандин), диопсидом, сине-зеленой роговой обманкой, актинолитом, эпидотом, кальцитом, хлоритом [23]. Размеры зерен минералов, слагающих скарны, лежат в пределах от долей миллиметров до нескольких миллиметров. На отдалении от интрузии и выше абс. отм. 900 м скарны сменяются эпидоткальцитовыми *скарноидами*.

Березиты серицит-кварцевого состава контролируются северо-восточными разрывами и отчетливо накладываются на все прочие фации гидротермалитов. Серицит местами полностью замещает роговиковый биотит; в переменных количествах отмечается хлорит. Мелко- и среднезернистый пирит образует вкрапленность, прожилки и просечки, слагая до 20 % породы. *Грейзены* локально развиты в околоинтрузивной зоне и сложены мелкозернистыми агрегатами кварца, мусковита, турмалина, флюорита.

Развалы рудного материала на склонах и пересечения рудных тел горными выработками геометризуются в серию согласных с напластованием вмещающих пород рудных зон мощностью до 40 м, протяженностью до 1.5 км, север-северо-восточного простирания (рис. 3). Рудный материал представлен метасоматически измененными породами, скарнами и скарноидами с сульфидными прожилками и жилами мощностью до 1 м и зонами интенсивной сульфидной вкрапленности. Количество рудной минерализации достигает 40 %, в среднем 10–15 %. Преобладают массивные, вкрапленные и прожилковые текстуры руд (рис. 4). Визуально по минеральному составу руды Ветвистого можно разделить на два типа: пирит-магнетитовый и полиметаллический с пирротином и арсенопиритом в различных вариациях. Минерализация первого типа

Рис. 3. Геологический разрез рудопроявления Ветвистое по линии АА на рис. 1. *I* – слоистость осадочной толщи; *2* – скважины. Остальные условные обозначения на рис. 1

Рис. 4. Текстуры различных типов руд проявления Ветвистое.

а – массивная, вкрапленная, пирит-магнетитовые руды; *б*–*г* – брекчиевая, пирит-арсенопиритовые руды; *д*–*е* – прожилковые, полисульфидные руды. Размер образцов на фото от 5 до 8 см.

встречена в центральной и северной частях рудопроявления. Количество магнетита иногда достигает 95 % рудной минерализации, в подчиненном количестве присутствуют пирит (до 20 %), сфалерит (до 5 %), галенит (до 3 %), арсенопирит (до 1 %), халькопирит (до 1 %,) пирротин (до 1 %). Из нерудных минералов преобладают амфибол, хлорит, мусковит и бело-серый мелкокристаллический кварц. Минерализация второго типа представлена сплошными, массивными, реже прожилково-полосчатыми агрегатами (рис. 4) пирротина (30–85 %), арсенопирита (5–10, до 50 %), галенита (5–10 %), сфалерита (10–20 %), пирита (до 10 %), халькопирита (до 10 %), минералами Те, Ві, Ад и самородного золота. Из нерудных минералов – кварц.

Содержания основных рудных элементов по результатам анализа ICP-MS (табл. 1): Zn до 5.5 %,

Рb до 1.2 %, Cu до 0.7 %, Ag до 255 г/т, Au до 30 г/т. Геохимический спектр минерализации (в порядке убывания кларка концентрации в скобках): Zn (232)– Ag (120)–Pb (46)–Cu (15)–Sn (14)–Au (11)–Sb (10)–Te (7)–Mn (3)–Co (2).

МИНЕРАЛОГИЯ РУДОПРОЯВЛЕНИЯ

Всего на рудопроявлении Ветвистое выявлено 11 рудных минералов, 7 жильных и скарновых (табл. 2; рис. 4, 5).

Наиболее ранним по времени образования среди жильных и скарновых минералов является *диопсид*, образующий крупные метакристаллы размером до 5 мм.

Гранат буро-красного цвета – один из наиболее распространенных минералов в скарнах, зачастую его скопления выполняют тонкие линзы и просечки

NºNº	Mn	Co	Ni	Cu	Zn	As	Mo	Ag	Sn	Sb	Te	W	Pb
B-2/207	1480.9	4.0	16.8	203.8	5165.0	74.7	0.1	1.1	57.1	1.9	5.5	1.1	41.3
B-2/238	1272.2	30.5	155.7	213.7	18931.9	183.5	0.8	2.1	25.6	1.8	7.5	0.5	12.7
B-4/155	1023.0	19.8	20.5	440.6	98677.2	1192.6	1.3	255.4	72.6	201.7	7.3	1.2	118298.0
B-5/42	707.0	50.9	118.1	1144.3	7643.9	31.3	0.3	10.1	97.1	0.9	12.1	1.1	38.6
B-5/72	1237.3	14.4	73.3	2102.1	10864.8	190.3	0.6	188.1	458.5	13.0	23.8	3.4	10171.3
B-7/75	5509.7	21.9	177.7	653.2	103873.8	117.8	1.2	27.5	25.6	11.8	9.2	10.0	2910.9
B-9/8	3115.1	53.9	20.7	37.8	510.8	712.9	2.0	16.7	20.4	6.5	8.2	0.6	1794.4
B-9/69	3023.2	156.9	45.0	6720.2	762.2	166.9	0.6	55.4	37.0	22.4	5.9	0.7	1357.3
B-9/133	2975.0	157.9	155.6	1203.9	641.6	5861.6	1.1	5.1	15.0	12.7	6.7	0.6	239.9
B-11/202	3782.1	17.5	28.7	1063.2	183.0	834.5	0.1	7.7	21.5	5.4	6.2	0.8	28.4
B-12/14	4209.5	22.2	22.9	272.1	89042.3	564.2	0.4	161.4	80.0	111.4	5.8	1.2	53563.9
B-12/223	3647.4	37.5	137.0	736.2	171239.8	31032.2	0.8	22.8	86.1	39.8	6.0	2.8	728.0
B-13/84	3616.9	58.7	57.1	386.6	87322.2	2363.7	0.1	50.4	61.4	18.8	7.5	1.4	6276.2
B-13/96	1572.4	4.8	23.6	98.4	3314.4	361.5	1.5	1.6	29.8	3.9	5.4	1.1	109.9
B-13/112	3267.1	22.5	14.5	1738.3	549178.2	2984.7	0.3	15.1	22.6	5.2	6.9	0.2	76.6
B-13/164	1094.5	116.6	35.0	687.5	15706.8	74408.6	1.1	14.4	22.8	55.5	5.9	1.4	224.6
B-13/185	2213.3	19.8	30.2	209.3	5973.2	3525.4	2.1	4.2	16.6	7.0	4.3	0.8	523.5
B-13/211	8361.2	39.1	86.6	66.8	1141.5	1869.7	0.9	1.5	21.1	9.6	3.6	1.3	113.0

Таблица 1. Содержания рудных элементов по результатам анализа ICP-MS (С.Ф. Стружков, 2009 г.), г/т.

Таблица 2. Минеральный состав рудопроявления Ветвистое.

Главные	Второстепенные	Редкие						
Рудные минералы								
Магнетит	Пирит	Аргентотетраэдрит						
Пирротин	Халькопирит	Пираргирит						
Сфалерит	Галенит	Теллуриды Ві						
		Самородное золото						
		Гессит						
Жи	пьные и скарновые	минералы						
Диопсид,	Эпидот	Хлорит						
гранат,	Кальцит							
пироксен,	Серицит							
кварц	Амфибол							
	Гипергенные мине	ералы						
Гидроксиды Fe								

между пирротином и пиритом. Размеры зерен достигают 0.3 мм, их края неровные, корродированные. По результатам микрозондового анализа состав граната близок с спессартину (MnO 30.1 %, $A1_2O_3$ 18.9 %, SiO_2 36.4 %, Ca 8.6 %, Fe 5.6 % и Ti 0.5 %), что необычно для Pb-Zn скарнов, в которых чаще всего преобладают Ca-гранаты [31].

Кварц наблюдается во всех типах руд, но его количество не превышает первые проценты, за исключением минерализации полиметаллического типа, где на его долю приходится до 30 %. В магнетитовых рудах он наблюдается в виде обособленных импрегнаций продолговатой и округло-продолговатой формы, размером первые миллиметры; в полиметаллических – слагает просечки длиной первые сантиметры и мощностью 2–4 мм.

Сине-зеленая железистая *роговая обманка* образует мелко-среднезернистые агрегаты, местами пол-

Рис. 5. Взаимоотношения рудных минералов рудопроявления Ветвистое.

a – контакт пирита (Ру) и пирротина (Ро); δ – взаимоотношения пирротина, пирита, галенита (Gn) со сфалеритом (Spl), содержащим вкрапленность халькопирита (Chp); e – локализация в арсенопирите (Ar) сфалерита, окруженного каймой халькопирита в ассоциации с галенитом; e – контакт арсенопирита с магнетитом (Mt), пирротином и сфалеритом; e – контакт пирита с гранатом (Gr); \mathcal{K} – зерно арсенопирита с вкраплением галенита в пирротине; 3 – галенит с вкрапленностью минералов Вi в арсенопирите, контактирующем с магнетитом; u – вкрапленность самородного висмута (Bi), теллуридов висмута (BiTe) и пирротина в арсенопирите; κ – интерстициальное заполнение арсенопирита галенитом, самородным висмутом и самородным золотом (Au); m – контакт самородного золота с халькопиритом, выполняющим интерстиции в арсенопирите; n – контакт галенита, содержащего вкрапленность блеклой руды (Fh) и гессита (Hes) с халькопиритом; o – вкрапленность гессита в галените; n – контакт магнетита, сфалерита и арсенопирита с блеклой рудой, пираргиритом (Pr) и халькопиритом

ностью замещая пироксен. С амфиболом тесно ассоциируют эпидот, образующий гнезда и прожилки.

Магнетит широко распространен, образует как массивные скопления, так и рассеянную вкрапленность в породах. Размер его зерен до 1 мм. Корродируется и цементируется арсенопиритом и пиритом.

Пирит развит повсеместно, с глубиной его количество уменьшается. Представлен преимущественно идиоморфными кристаллами размером до 7 мм, слагающими вкрапленность и массивные агрегаты (рис. 5). Пирротинсодержащим минеральным парагенезисам присуща кавернозная структура; каверны заполнены пирротином, халькопиритом и сфалеритом. Химический состав близок к стехиометрическому (табл. 3).

Самый распространенный рудный минерал – *пирротин*. Наблюдается как в виде вкрапленности, так и слагает самостоятельные прожилки и жилы. Представлен ксеноморфными агрегатами размером до 7 миллиметров, в среднем 0.2–0.6 мм (рис. 5). Корродирует и цементирует пирит, совместно с халькопиритом и сфалеритом выполняет в нем каверны. Химический состав близок к стехиометрическому (табл. 3).

Арсенопирит образует тонкую вкрапленность, реже гнезда размером от сотых долей мм до 3 мм. Ассоциирует с пирротином, сфалеритом и халькопиритом, галенитом, минералами Ві, Ад, самородным золотом (рис. 5). По составу (табл. 3) выделяется высокосернистый (S до 22.7 вес. %) и низкосернистый арсенопирит, обогащенный Со (от 0.3 до 0.9 вес. %), вплоть до данаита (Со 10.3 вес. %).

Сфалерит образует неравномерную вкрапленность ксеноморфных агрегатов размером 0.2–0.6 мм. Его количество в рудах с глубиной возрастает до 10–20 %. Зачастую сфалерит содержит тонкую вкрапленность халькопирита (рис. 5). На контакте с арсенопиритом вкрапленность халькопирита в сфалерите отсутствует, но в этом случае халькопирит формирует вокруг него каймы (рис. 5). По составу сфалерит высокожелезистый и марганцовистый (табл. 3).

Халькопирит устойчиво появляется в керне скважин ниже абс. отм. 800 м, его количество с глубиной постепенно возрастает до 5–10 % и становится сопоставимым с количеством сфалерита. Представлен ксеноморфными выделениями от сотых долей мм до 0.8 мм. Совместно с пирротином и сфалеритом образует вкрапленность в пирите. Ассоциирует с пиритом, сфалеритом, галенитом и минералами Ag (рис. 5). Халькопирит характеризуется примесью Zn от 0.5 до 1.1 % (табл. 3).

Галенит образует вкрапленность идиоморфных зерен размером в среднем 0.2–0.8 мм. Ассоциирует со сфалеритом, халькопиритом, арсенопиритом, минералами Ag и Bi (рис. 5). По химическому составу можно выделить четыре типа галенита (табл. 3): 1) стехиометричный; 2) серебристый (Ag 2–3.3 вес. %); 3) цинксодержащий (Zn 1.4–3.6 вес. %); 4) висмутсодержащий (Bi 2.6–6.2 вес. %).

Теллуриды Ві зачастую совместно с галенитом и *самородным Ві* (рис. 5) выполняют интерстиции в арсенопирите. Размер агрегатов от 0.01 до 2 мм. В химическом составе (табл. 3) вариации содержаний Ві от 63.2 до 84.2 вес. %, а Те – от 17.7 до 36.6 вес. %, что наиболее близко соответствует составам хедлейита и цумоита.

Минералы Ад представлены *Ад-содержащей* блеклой рудой и пираргиритом, а также единичными зернами *гессита* (рис. 5, табл. 3). Они образуют вкрапленность в галените и арсенопирите в ассоциации с халькопиритом (рис. 5). Размер выделений от 0.01 до 0.1 мм (табл. 3).

Умеренно-низкопробное самородное золото наблюдается в виде ксеноморфных зерен размером от 0.08 до 0.5 мм. Присутствует только в рудах с преобладанием арсенопирита, где наблюдается совместно с галенитом (рис. 5). По составу соответствует электруму (26.6–46.5 вес. % Ад, табл. 4).

На основании наблюдений взаимоотношений рудных минералов мы выделяем три минеральных ассоциации (рис. 6): 1) пирит-магнетитовая; 2) полисульфидная (пирит+арсенопирит+пирротин+сфалерит+халькопирит+галенит); 3) золото-серебро-теллуридно-висмутовая.

ФЛЮИДНЫЕ ВКЛЮЧЕНИЯ

Термобарогеохимическими методами изучено 70 индивидуальных флюидных включенияй в 11 образцах кварца руд разного типа (табл. 5). 68 % ФВ имеют размер от 6 до 15 мкм, 20 % – до 5 мкм, всего 12 % – от 18 до 25 мкм. По фазовому составу только 12 % ФВ преимущественно «газовые» (КН менее 50), основная часть – двухфазовые газово-жидкие (КН до 92) (рис. 7), зачастую содержащие дочерние фазы, которые при нагревании не растворялись, а по результатам КР-спектроскопии не дали четких спектров, которые бы позволили их однозначно интерпретировать, но имели незначительные пики в диапазонах 490, 620, 880 и 1140 ст⁻¹ характерных для Са содержащих силикатов и сульфатов.

Состав газовой фазы однозначно определить сложно. В преимущественно «газовых» ФВ при охлаждении до -180 °С никаких видимых изменений не происходит, только в двух случаях во ФВ в кварце удалось выморозить СО₂, плавление которой про-изошло при -60 и -55 °С. КР-спектрометрией ФВ в кварце полиметаллических руд СО₂ не идентифици-

Номер					Соде	ржани	я, вес. і	конц. %						
образца	Ag	Ni	Cu	Fe	Zn	Pb	Mn	As	Со	Bi	Te	Sb	S	Сумма
I ,	8	1	1		11	Пири	r FeS		1 1				1	
C-11-205.8	_	_	_	46.6	_	_	_	_	_	_	_	_	52.4	99.0
C-11-205,8	_	_	_	46.8	_	_	_	_	_	_	_	_	53.4	100.2
C-11-205,8	_	_	_	47.3	_	_	_	_	_	_	_	_	52.5	99.8
C-11-205,8	_	_	_	47.4	_	_	_	_	_	_	_	_	51.7	99.1
C-11-165,2	_	_	_	47.5	_	_	_	_	_	_	_	_	52.6	100.1
C-11-165.2	_	_	_	47.9	_	_	_	_	_	_	_	_	52.3	100.2
C-11-165.2	_	_	_	48.2	_	_	_	_	_	_	_	_	52.5	100.7
C-11-205.8	_	_	_	48.5	_	_	_	_	_	_	_	_	50.9	99.4
C-11-165.2	_	_	_	48.7	_	_	_	_	_	_	_	_	52.8	101.5
1*	_	1.23	_	46.0	_	_	_	_	_	_	_	_	52.6	99.8
2*	_	1.34	0.16	45.8	_	_	_	_	_	_	_	_	52.4	99.7
		-			Пирро	этин Fe	$e_{(1-x)}S_{(x=1)}$	0_0 17)					-	
C-3-22.5	_	_	_	61.6		_	<u>(1-x)</u> (x)	_	_	_	_	_	37.4	99
C-5-72	_	_	_	62.2	_	_	_	_	_	_	_	_	37.5	99.7
K-3-65	_	_	_	62.5	_	_	_	_	_	_	_	_	36.5	99.0
C-11-205.9	_	_	_	62.8	_	_	_	_	_	_	_	_	37.7	100.5
C-2-40 1	_	_	_	63.1	_	_	_	_	_	_	_	_	36.4	99.5
$C_{-2-40,1}$	_	_	_	63.3	_	_	_	_	_	_	_	_	36.4	99.7
C-5-72	_	_	_	63.6	_	_	_	_	_	_	_	_	36.4	100.0
C-11-205 9	_	_	_	64 0	_	_	_	_	_	_	_	_	36.0	100.0
C-2-40 1	_	_	_	64.6	_	_	_	_	_	_	_	_	34.9	99.5
K-3-65				64.6									36.2	100.8
K-3-03	_		_	04.0	- Хал		- ut CuE	-					30.2	100.0
<u>C 2 40 1</u>			22.1	20.1	1 0	ькопир	ni Curo	c3 ₂					25	00.2
C = 2 = 40,1	_	_	21	20.1	1.0	_	_	_	_	_	_	_	33 24.6	99.2 100.1
C = 2 = 40,1	—	—	27 4	20.4	1.1	_	—	_	—	_	_	_	24.0	00.7
C = 2 = 40,1	—	—	22.5	20.0	1.1	_	—	_	—	_	_	_	24.5	99.7 00.6
C-2-40,1	_	_	55.5	30.9	0.7 Ch	-	$\frac{-}{(7n \text{ Fo})}$	-	_	_	_		54.5	99.0
C 5 72				14.9	<u></u>	алерит	$\frac{(ZII, IC)}{2.0}$	5					22.4	00.8
C - 3 - 72	_	_	_	14.0	40.0	_	5.0	_	_	_	_	_	33.4 22.9	99.8
C-3-22,5	_	_	_	13.0	49.8	_	0.0	_	_	_	_	_	22.0 22.6	99.2 00.0
C = 2 - 80	_	_	_	14.2	50.2	_	1.0	_	_	_	_	_	22.0	99.0 100.0
C-3-22,3	_	_	_	13.0	50.0	_	0.0	_	_	_	_	_	33.0 25.0	100.0
C-11-205,9	_	_	_	10.0	50.7	_	2.02	_	_	_	_	_	24.0	99.2
C-11-205,9	_	_	_	10.8	50.8	_	2./	_	_	_	_	_	34.9	99.2
C-2-86	_	_	_	13./	50.9	_	1	_	_	_	_	_	35./	99.3
C-2-40,1	_	_	_	13.9	51	_	0.9	_	_	_	_	_	33.0	101.4
C-4-155	—	—	_	13	52.6	_	0.5	—	_	_	—	_	32.9	99
C-4-155	_	_	_	11./	53.5	_	0.4	_	_	_	_	_	33.6	99.2
C-4-155	_	_	_	11.3	54./	_	0.1	_	_	_	_	_	33	99.I
<u>C-4-155</u>	_	_	_	12	<u> </u>	_	0.3	-	_	_	_	_	33.4	100.7
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					Apc	енопир	оит FeA	ISS						101.0
C-2-40,1	—	—	_	35.7	—	—	—	42.6	—	-	—	—	22.7	101.0
C-2-40,1	—	—	_	34.7	—	-	—	43.7	—	_	_	—	22.4	100.8
C-4-155	-	_	_	33.9	_	_	_	48.0	_	—	_	—	18.6	100.5
C-4-155	-	_	_	33.1	-	-	_	48.0	0.3	-	_	-	18.3	99.7
C-4-155	—	—	_	33.6	—	-	—	46.5	0.5	_	_	_	19.4	100.0
C-5-72	—	—	_	34.1	—	—	—	45.9	0.6	_	—	—	19.3	99.9
C-2-40,1	-	_	_	33.4	_	_	_	46.0	0.9	_	_	_	19.4	99.7
C-5-72	-	-	_	33.2	_	_	_	48.8	0.5	-	—	-	18.2	100.7
2132-3	_	_	_	22.3	_	_	_	48.6	10.3	_	_	_	20.3	101.5

Таблица 3. Химический состав рудных минералов рудопроявления Ветвистое.

Номер	Содержания, вес. конц. %									Currente				
образца	Ag	Ni	Cu	Fe	Zn	Pb	Mn	As	Co	Bi	Te	Sb	S	Сумма
*	· · · ·				Л	еллинги	т FeAs	2						
8*	_	0.4	_	27.9	_	_	_	67.7	_	_	_	_	2.4	98.4
		011		_///		Галени	TT PhS	0111						,
C 3 22 5					2.0	8/ /	11105						12.2	00.6
C = 3 = 22,3	$^{-}$	_	_	_	2.0	07.7 92.7	_	_	_	_	_	_	12.2	100.0
C-3-22,3	0.2	_	_	_	3.0	05.7	_	_	_	_	_	_	12.3	100.0
C-3-22,5	0.2	_	_	_	2.1	85.9	_	—	_	—	_	_	12.8	101.0
C-3-22,5	0.3	_	_	_	1.9	85.6	_	_	_	_	_	_	12.8	100.6
C-3-22,5	0.2	_	_	_	1.8	85.2	_	_	_	_	_	_	12.6	99.8
2132-3	2.0	—	—	—	—	85.0	—	—	—	—	—	—	13.8	100.8
2132-3	2.2	_	_	_	_	85.8	_	_	_	_	_	_	12.7	100.7
2132-3	2.4	_	_	_	_	83.2	_	_	_	_	_	_	14.0	99.6
2132-3	3.3	_	_	_	_	83.9	_	_	_	_	_	_	13.0	100.2
C-4-155	_	_	_	_	_	87.0	_	_	_	_	_	_	13.4	100.4
C-4-155	_	_	_	_	_	87.1	_	_	_	_	_	_	13.6	100 7
C-5-72	_	_	_	_	_	81.8	_	_	_	26	_	_	13.7	98.1
C = 3 - 72						82.5				2.0			12.0	08.6
C-2-40,1	_	_	_	_	_	02.5	_	_	_	5.2	_	_	12.9	96.0
C-2-40,1	_	_	_	_	_	81.5	_	_	_	0.2	_	_	12.3	100.0
C-2-40,1	_	_	_	-	_	//.1		_	_	10.3	_	_	12.7	100.1
				Фрей	бергит	r (Ag, Ci	u, Fe) ₁₂ ((Sb, As)	${}_{4}S_{13}$					
80	18.5	_	26.8	6.9	_	-	_	_	_	-	_	27.6	20.6	100.4
29	19.0	_	19.9	5.2	_	9.4	_	_	_	_	_	25.5	22.2	101.2
29	19.6	_	19.6	5.2	_	8.1	_	_	_	_	_	26	22.1	100.6
80	20.4	_	23.6	7.5	_	_	_	_	_	_	_	27.7	20.4	99.6
29	24.0	_	19.8	5.4	_	_	_	_	_	_	_	27.4	21.9	98.5
			17.0		Пи	папгипи		hSa				_,	,	2010
80	51.5		2.6	57	1111	րորորո	II Ag35	003				22.8	16.5	100.1
80	50.0	_	5.0	5.7	_	1.0	_	_	_	_	_	22.0	10.5	100.1
80	38.2	_	1.0	_	_	1.9	-	_	_	_	_	20.4	10.7	98.8
						Гессит	$Ag_2 Te$							
29	61.6	—	—	—	—	—	—	—	—	—	38.3	—	—	99.9
2132-3	63.7	_	_	_	_	_	_	_	_	_	37.2	_	_	100.9
2132-3	66.0	_	_	_	_	_	_	_	_	_	36.3	_	_	102.3
						Теллури	ады Ві							
2132-3	_	_	_	_	_		_	_	_	63.2	36.8	_	_	100
2132-3	_	_	_	_	_	_	_	_	_	63.2	36.8	_	_	100
2132-3	_	_	_	_	_	_	_	_	_	70.2	29.3	_	_	99.5
V 2 122										94.5	19			102.5
K-2-155	_	_	_	_	_	_	_	_	_	04.J 05 1	10	_	_	102.5
K-2-133	_	_	—	_	-	_	_		_	85.1	1/./	—	—	102.8
					Вис	смут сам	лородні	ЫЙ						
2132-3	_	_	_	_	_	_	_	_	_	98.3	_	_	-	98.3
					Ca	мородно	ое золо	го						
117	46.5	53.3	_	_	_	_	_	_	_	_	_	_	_	99.8
117	45.1	53.4	_	_	_	_	_	_	_	_	_	_	_	98.5
2132-3	26.6	72.3	_	_	_	_	_	_	_	_	_	_	_	98.9
2132-3	27.6	73	_	_	_	_	_	_	_	_	_	_	_	100.6
2132 3	27.0	73.0	_	_	_	_	_	_	_	_	_	_	_	101.0
2132-3	27.2	711	_	_	_	_	_	—	_	—	_	—	—	101.1
LIJL-J	21.3	/4.4	_	_	_	_	_	_	_	_	_	_	_	101./

Таблица 3. (Окончание).

Примечание. * – данные С.Ф. Стружкова, 2009 г. Прочерк – элемент не обнаружен.

Этап	I. Скарновый	рмальный	
Стадия Минералы	Скарново- магнетитовая	Полисульфидная	Золото-серебро- Те-Ві
Кварц			
Гранат			
Магнетит			
Пирит			
Сфалерит			
Халькопирит			
Арсенопирит			
Галенит			
Пирротин			
Самородное золото			
Теллуриды висмута			
Висмут самородный			
Фрейбергит			
Пираргирит			
Гессит			

Рис. 6. Схема последовательности минералообразования рудопроявления Ветвистое.

Таблица 4. Химический состав самородного золота рудопроявления Ветвистое.

№ пробы	Au	Ag	Сумма
117	53.3	46.5	99.8
117	53.4	45.1	98.5
2132-3	72.3	26.6	98.9
2132-3	73	27.6	100.6
2132-3	73.9	27.2	101.1
2132-3	74.4	27.3	101.7
1*	81.8	16.5	98.3
2*	32.37	64.04	96.4
3*	76.72	20.95	97.7
8*	83.33	12.29	96.6

Примечание. * – данные С.Ф. Стружкова. 2009 г.

ровано, но в 3 из 7 изученных ΦB было установлено наличие N₂ и CH₄ (рис. 7).

Криометрические исследования выявили, что во ФВ, размер которых позволил идентифицировать фазовый переход, заключены хлоридные растворы. Эвтектика растворов в 20 % случаев происходит при температурах -50...-56 °С, в 13 % в интервале -70...-73 °С, что отвечает, соответственно, CaCl и LiCl системам. В остальных случаях эвтектика отмечается в широком интервале от -65 до -23 °С, что характеризует составы растворов как смешанные, насыщенные ионами низкозарядных элементов.

Концентрация солей в растворах, заключенных в 46 % ФВ, более 20 мас. % экв. NaCl (для растворов, отвечающих CaCl и LiCl составам, концентрация рассчитывалась по диаграммам, соответствующим этим системам [37], для NaCl – по стандартной методике), достигая 29 мас. % экв. CaCl. 54 % ФВ заполнены растворами соленостью менее 10 мас. %. экв. NaCl, редко достигая значений меньше 3.3 мас. % экв. NaCl.

Температуры гомогенизации колеблются от 600 до 123 °C. Их распределение на гистограмме бимодальное, с пиками в интервале 202–280 °C и 350– 450 °C. «Газовые» ФВ декрепитируют в диапазоне 300–600 °C. ФВ гомогенизирующиеся при температурах выше 280 °C локализуются в кварце арсенопиритовых руд, эти ФВ заполнены высококонцентрированными Ca-Li-Cl растворами (рис. 8). В кварце полиметаллических руд гомогенизация ФВ происходит при температурах ниже 280 °C, а ФВ заполнены средненизкоконцентрированными растворами NaCl состава насыщенными ионами Fe, Mg, Ca (рис. 8).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рудопроявление Ветвистое располагается в ближней экзоконтактовой зоне гранитоидного плутона, прорывающего осадочные толщи, содержащие карбонатные прослои, по которым развиты гранатпироксеновые скарны, вмещающие продуктивное

			Экспериментал	Расчетные данные			
№ образца	п замеров	Тгом, ⁰С	Тэвт, ⁰С	Тпл.льда, ⁰С	Тпл. СО ₂ , °С	КН*, %	C, мас. % экв. NaCl
4109-1	3	<u>600</u> 470	-	-	-	6075	-
	1	-	-	-	-60	25	-
C 7 24	3	450388	-56	-32.6	-	8075	25
C-7-24	2	224190	-		-	8075	-
	3	450	-6560	-4026	-	4033	2015
1042	3	413350	-65	-3.4	-	8375	5.6
	2	165150	<u>-69</u> 60	-28	-	9175	14
	7	413311	-7370.6	-25.97.2	-	9175	2410
2132-3	5	300255	-52.5	-38.726	-	9275	27.524
	9	253202	-6752.5	-4126	-	8983	<u>29</u> 25
1050D	6	280211	-	-6.9… <u>-0.9</u>	-	8980	10.4 1.5
1050B	2	-	-	-	-55	70	-
C-2-37 2	3	253224	-30	-41.8	-	8650	-
C-2-37,2	2	-	_		-	-	-
	3	251242	-28	-6.53.5	-	-	-
C-9-68 9	3	209139	-26	-8	-	-	11.6
C-9-08,9	1	132	-	-14.3	-	-	18
	1	175	-23	-2.6	-	85	4.3
К-2-133	3	206123	-23	-3.72	-	8583	63.3
К-5-310	1	177	-23	-5.4	-	80	8.4
117	5	177138	-26	-53	-	8580	7.85

Таблица 5. Результаты термобарогеохимического анализа кварца разных типов рудопроявления Ветвистое.

Примечание. КН – коэффициент наполнения флюидного включения: соотношение объемных частей жидкой фазы к газовой; цифры, выделенные полужирным шрифтом: подчеркнутые – максимальные значения для объекта; не подчеркнутые – минимальные. Пробел – значения отсутствуют в связи с техническими ограничениями.

полиметаллическое оруденение. На скарны наложены кварц-серицитовые березиты, несущие арсенопирит и золотую с теллуридами Ві минерализацию. Взаимоотношения рудных тел и их текстурно-структурные особенности позволяют наметить два этапа минералообразования — скарново-магнетитовый (I) и гидротермальный (II); в пределах последнего выделяются полисульфидная и золото-теллуридно-висмутовая минеральные ассоциации (рис. 6).

На первой стадии гидротермального этапа, в условиях высоких температур (выше 280° C) кристаллизовались пирит и высокосернистый (S = 32– 34 вес. %) арсенопирит. Во вторую стадию на фоне снижения температуры и концентрации гидротерм формировались сфалерит, халькопирит, галенит, низкосернистый (S = 29–30 вес. %) арсенопирит и пирротин. Последними выделялись самородное золото, минералы Ag, Te, Bi, сонахождение которых в одном парагенезисе, а также большая вариация количества серебра в самородном золоте могли быть обусловлены высокими градиентами температуры на данном этапе

эволюции рудно-магматической системы. Следует отметить, что в Охотско-Чукотском поясе известны и другие примеры наложения на Pb-Zn скарны поздних золото-висмут-арсенидных минеральных парагенезисов [8, 9]). Установленные значения δ^{34} S варьируют от +3.1 ‰ в пирите до +0.3 ‰ в галените, что указывает на однородность источника серы на всем протяжении формирования руд.

Согласно фазовым диаграммам для систем Fe-As-S [29], образование арсенопирита с содержанием серы 35 ат. % происходит при значении log fS₂ от -4 до -10.3 в температурном интервале от 580 до 420 °C. Фазовое равновесие между пиритом и арсенопиритом с содержанием серы 33 ат. % возможно, когда температура достигает 49 °C, значения log fS₂ – -4.5, а с содержанием 32 ат. % – 450 °C и log fS₂ - 5.5. Фазовое равновесие арсенопирит-пирротин для арсенопирита с содержанием серы 35–34 ат. % наступает в период температур от 410 до 330 °C и log fS₂ от -10.2 до -13.5, а с содержаниями серы 33–32 ат.%, если температура ниже 300 °C и log fS₂ меньше -14,5. При температуре

Рис. 7. Типы флюидных включений и КР-спектры N₂ и CH₄, составляющих их газовую фазу в кварце рудных агрегатов рудопроявления Ветвистое.

 а – зональное расположение ФВ разной морфологии в кварце; б−е – сонахождение существенно газовых с газово-жидкими ФВ и ФВ с дочерними фазами; *с*−*д* – газово-жидкие ФВ; *е* – газово-жидкое ФВ с дочерними фазами, изученное КР-спектрометрией; *ж* – КР-спектр N₂; 3 – КР-спектр СН₄.

250 °C и log fS₂ -14.5, а log fTe₂ -12, согласно [25, 26], возникают условия для сосуществования галенита, пирротина, пирита, самородного висмута и теллуридов висмута. При сохранении значения активности серы, но снижении температуры до 150 °C и log fTe₂ от -14.5 до -17.5 формируется гессит в парагенезисе с халькопиритом, далее при сохранении тренда снижения активности теллура образуются сульфиды серебра с халькопиритом. Стабильность гессита в пространстве fO_2 -pH [36] при T = 250 °C совместно с пиритом и халькопиритом возможна, если fO_2 -30 и pH от 2 до 10, в парагенезисе с пирротином – при fO_2 ниже -40 и pH до 12.

Термобарогеохимические исследования индивидуальных ФВ в кварце разных типов руд показали (рис. 8), что рудный процесс начался при температурах выше 450 °С, руды формировались из высококонцентрированных (25–15 мас. % экв. CaCl) гете-

Рис. 8. Диаграммы соотношений температура гомогенизации – концентрация солей – температура эвтектики по данным изучения ФВ в кварце рудных тел рудопроявления Ветвистое.

Номера точек соответствуют номерам образцов. На диаграммах отмечен преобладающий минеральный состав в образцах.

рогенных гидротерм, насыщенных хлоридами лития и кальция, по сценарию остывания [35] с незначительным выкипанием [37], а к завершению процесса (250–200 °C) состав флюида стал более кальциевым. Образование полисульфидной и золото-теллуридновисмутовой минерализации проходило в условиях разбавления гидротерм (рис. 8) – концентрация солей к температуре 250 °C снизилась до 5.7–1.5 мас. % экв. NaCl, а в составе стали преобладать ионы Na, Fe и Мg. Завершение рудообразования проходило по сценарию охлаждения и частично выкипания [37]. Такая картина согласуется с генеральной последовательностью формирования Pb-Zn скарнов [11]. Все полученные данные, характеризующие физико-химические условия формирования руд, указывают на то, что изученные руды образовались из высокотемпературного (более 450 °C), высококонцентрированного (более 20 мас. %), хлоридного (Ca-Li-Mg-Fe-Na) флюида на фоне одновременного снижения температуры (от 490 до 100 °С) и активности серы от log fS₂ -4.5 до -14.5. Минералы Ад, Аи и Ві образовались, когда в системе температура снизилась до значений менее 250 °С, а активность серы стабилизировалась, при том, что фугитивность теллура и кислорода продолжали снижаться (log fTe, от -12 до -17.5; fO, от -30 до -40) одновременно с изменением рН среды от кислого до щелочного (от 2 до 12).

Индикаторные минералого-геохимические показатели, такие как соотношения «гранат / пироксен», «магнетит / гематит», Zn / Pb, соленость флюида и температуры гомогенизации ФВ, позволяют отнести Ветвистое в генерализованной схеме зональности [32] к проксимальной зоне. По классификации В.И. Синякова [21], рассматриваемая скарново-рудная система относится к смешанному конвективнофильтрационному типу, основному для скарновых Pb-Zn месторождений. Как мы уже отмечали, спессартиновый состав граната Ветвистого необычен для Pb-Zn скарновых месторождений, на которых преобладают кальциевые гранаты [8, 9, 20, 31]. Однако, с другой стороны, по данным В.И. Синякова [21], для скарновых систем фильтрационного типа является характерным обогащение Mn всех породообразующих минералов. Это подтверждается, в частности, данными по шеелит-сульфидным скарновым месторождениям Приморья [6].

По геологическому строению рудопроявление Ветвистое, как и прочие скарновые Pb-Zn рудопроявления ОЧВП, такие как Седое [9], Хивач [3], Скарновое [24], существенно отличаются от «классических» скарновых Pb-Zn месторождений Дальнегорского района Приморья [19, 20]. Главным отличием является намного меньший объем карбонатных отложений в рудоносных толщах, вмещающих оруденение ОЧВП, что определило относительную редкость тел скарнов и их малые мощности. Наличие поздней наложенной на скарны Au-Ag-Bi-Te минерализации также отличает скарновые объекты ОЧВП от Приморских, и, с другой стороны, сближает их с золоторудными скарновыми месторождениями, такими как Синюхинское (Алтай) и Тардан (Тува) [5, 10].

выводы

Рудопроявление Ветвистое представляет собой скарново-полиметаллическую рудно-магматическую систему, связанную с позднемеловыми гранитоидами Охотско-Чукотского вулканогенного пояса. Руды формировались из изначально высокотемпературных (600 °C) и высококонцентрированных (29–20 мас. % экв. NaCl) гидротермальных растворов-рассолов преимущественно CaCl и LiCl состава, насыщенных газовой фазой, на фоне вскипания и периодического разбавления флюида (до 1 мас. % экв. NaCl), изменений фугитивности S, O,, Te и pH.

Отличия геологического строения и состава рудопроявления Ветвистое от «классических» скарновых Pb-Zn месторождений обусловлены существенно меньшим развитием карбонатных пород в рудовмещающем разрезе, а также наложением поздних Au-Ag-Bi-Te минеральных парагенезисов.

БЛАГОДАРНОСТИ

Благодарим Дальневосточный геологический институт ДВО РАН, лично к.г.-м.н. В.В. Пахомову за предоставленную возможность выполнить исследования на дисперсионном Раман-микроскопе Lab Ram HR, к.г.-м.н. Т.А. Веливецкую за качественно выполненный изотопный анализ, д.г.-м.н. В.В. Раткина и к.г.-м.н. Л.Ф. Симаненко за просмотр первоначального варианта рукописи и ценные замечания, позволившие существенно улучшить работу. Также выражаем признательность геологической службе ОАО «Дукатская ГГК» за возможность проведения полевых исследований и коллективу Центра коллективного пользования СВКНИИ ДВО РАН за своевременные и точные аналитические данные. Работа выполнена частично при поддержке НОЦ «Север: территория устойчивого развития», Технологический проект № 3 «Технологии наращивания минерально-сырьевой базы на основе исследований формирования и размещения стратегических видов полезных ископаемых Северо-Востока России».

СПИСОК ЛИТЕРАТУРЫ

- Акинин В.В., Хоуриган Дж., Райт Дж. и др. Новые данные о возрасте Охотско-Чукотского вулканогенного пояса (U-Pb SHRIMP-датирование) // Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма. М.: ГЕОС, 2006. С. 22–26.
- Антонов А.Е. Зарубежные месторождения серебра. М.: Недра, 1992. 254 с.
- Болдырев М.В., Яранцева Л.М. Хивачское рудное поле один из нетрадиционных для Северо-Востока типов серебро-полиметаллического оруденения: Материалы по геологии и полезным ископаемым Северо-Востока СССР. Вып. 27. Магаданское книжное изд-во, 1991. С. 276–278.
- Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–27.
- Гаськов И.В. Новые данные о соотношении скарновой и золоторудной минерализации на Тарданском месторождении (Северо-Восточная Тува) // Геология и геофизика. 2008. Т. 49, № 12. С. 1227–1237.

- Гвоздев В.И., Федосеев Д.Г., Гуриков А.В., Садкин С.И., Семеняк Б.И., Раткин В.В. Минералогия сопутствующих элементов руд скарнового шеелит-сульфидного месторождения Кордонного (Приморский край) // Тихоокеан. геология. 2014. Т. 33, № 3. С. 53–66.
- Геодинамика, магматизм и металлогения Востока России / Под ред. А.И. Ханчука. Владивосток: Дальнаука, 2006. Кн. 1–2. 981 с.
- Глухов А.Н., Прийменко В.В., Фомина М.И., Акинин В.В. Металлогения Конгинской зоны Омолонского террейна (Северо-Восток Азии) // Вестн. Северо-Восточного научного центра ДВО РАН. 2021. № 2. С. 3–16.
- Горячев Н.А., Егоров В.Н., Савва Н.Е., Кузнецов В.М., Фомина М.И., Рожков П.Ю. Геология и металлогения фанерозойских комплексов юга Омолонского массива. Владивосток: Дальнаука, 2017. 312 с.
- Двуреченская С.С. Новые данные о самородном золоте и составе рудных минералов Синюхинского золото-скарнового месторождения // Руды и металлы. 2010. № 5. С. 54–63.
- Добровольская М.Г. Генетические особенности свинцовоцинковых месторождений в карбонатных породах и скарнах // Построение моделей рудообразующих систем. Новосибирск: Наука, 1987. С. 141–151.
- Ермаков Н.П., Долгов Ю.А. Термобарогеохимия. М.: Недра, 1979. 271 с.
- Колова Е.Е., Малиновский М.А. Факторы образования золото-сульфидных руд месторождения Ветвистое (Магаданская область) // Чтения памяти акад. К.В. Симакова: Тез. докл. Всерос.науч.конф. Магадан: СВНЦ ДВО РАН, 2016. С. 25–26.
- Котляр И.Н., Русакова Т.Б., Гагиева А.М. Буюндино-Сугойская рудоконцентрирующая площадь: уникальный металлогенический ареал Северо-Востока России // Тихоокеан. геология. 2004. Т. 23, №. 1. С. 3–19.
- Кряжев С.Г., Прокофьев В.Ю., Васюта Ю.В. Использование метода ICP MS при анализе состава рудообразующих флюидов // Вестн. Московского ун-та. Серия 4: Геология. 2006. № 4. С. 30–37.
- Мельников Ф.П., Прокофьев В.Ю., Шатагин Н.Н. Термобарогеохимия. М.: Акад. Проект, 2008. 222 с.
- Мутавалиев А.Т. Рудоносность и тектонические условия образования скарново-рудных тел на месторождениях Алтын-Топканского рудного узла (Таджикистан) // Геология и геофизика юга России. 2017. № 1. С. 119–126.
- Рёддер Э. Флюидные включения в минералах. М.: Мир, 1987. Т. 1. 560 с.
- Рогулина Л.И., Свешникова О.Л. Николаевское скарновополиметаллическое месторождение (Приморье, Россия) // Геология руд. месторождений. 2008. Т. 50, № 1. С. 67–82.
- Симаненко Л.Ф., Раткин В.В. Партизанское скарново- полиметаллическое месторождение: геология, минералогия, генезис (Таухинская металлогеническая зона, Сихотэ-Алинь). М.: Наука, 2006. 158 с.
- Синяков В.И. Генетические типы скарновых рудообразующих систем. Новосибирск: Наука, 1990. 71 с.
- Стружков С.Ф, Константинов М.М. Металлогения золота и серебра Охотско-Чукотского Вулканогенного пояса. М.: Науч. мир, 2005. 320 с.
- Третьякова Н.И. Гидротермально-метасоматические образования золото-сульфидного рудопроявления Ветвистое

перивулканической зоны ОЧВП // Чтения памяти академика К.В. Симакова: Тез.докл. Всерос. науч. конф. Магадан: СВНЦ ДВО РАН, 2009. С. 147.

- Умитбаев Р.Б. Охотско-Чаунская металлогеническая провинция (строение, рудоносность, аналоги). М.: Наука, 1986. 286 с.
- Afifi A.M., Kelly W.C., Essene E.J. Phase relations among tellurides, sulfides, and oxides: I. Thermochemical data and calculated equilibria; II. Applications to telluride-bearing ore deposits // Economic Geology. 1988. V. 83. P. 377–404.
- Barton P.Jr., Skinner B.J. Sulfide mineral stabilities. In: Barnes HL (Ed) Geochemistry of hydrothermal ore deposits. New York: Wiley Interscience, 1979. P. 278–403.
- Bodnar R.J., Vityk M.O. Interpretation of microterhrmometric data for H₂O-NaCl fluid inclusions // Fluid inclusions in minerals: methods and application / Ed. by: Benedetto De Vivo, Maria Luce Frezzotti. Pontignano-Siena, 1994. P. 117–130.
- Brown P.E. FLINCOR; a microcomputer program for the reduction and investigation of fluid-inclusion data // American Mineralogist. 1989. T. 74, N. 11–12. P. 1390–1393.
- Frezzotti M.L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis // J. Geochemical Exploration. 2012. V. 112. C. 1–20.
- Kretschmar U., Scott S.D. Phase relations involving arsenopyrite in the system Fe–As–S and their application // Canadian Mineralogist. 1976. V 14, N 3. P. 364–386.
- Maniar P.D., Piccoli P.M. Tectonic Discrimination of Granitoids // Geological Society of America Bulletin. 1989. N 101.

P. 635–643.

- Meinert L.D. Skarns and Skarn Deposits // Geoscience Canada. 1992. V. 19, N 4. P. 145–162.
- Miyashiro A. Volcanic Rock Series in Island Arcs and Active Continental Margins // American J. Science. 1974. V. 274. P. 321–355.
- Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. Petrology. 1984. V. 25, N. 4. P. 956–983.
- Peccerillo A., Taylor S.R. Geochemistry of Eocene Calc Alkaline Volcanic Rocks from Kastamonu Area, Northern Turkey // Contribution to Mineralogy and Petrology. 1976. V. 58. P. 63–81.
- Wilkinson J.J. Fluid inclusions in hydrothermal ore deposits // Lithos. 2001. V. 55, N 1–4. P. 229–272.
- Zhang X, Spry P.G. Calculated stability of aqueous tellurium species, calaverite and hessite at elevated temperature // Economic Geology. 1994. V. 89. P. 1152–1166.
- 38. Zhang Y.G., Frantz J.D. Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl₂-H₂O using synthetic fluid inclusions // Chemical Geology. 1987. V. 64, N 3–4. P. 335–350.

Рекомендована к печати В.В. Раткиным после доработки 09.04.2024 г. принята к печати 12.09.2024 г.

VETVISTOE ORE OCCURRENCE AS AN EXAMPLE OF SKARN POLYMETALLIC MINERALIZATION IN THE OKHOTSK-CHUKOTKA VOLCANIC BELT

E.E. Kolova, A.N. Glukhov, M.A. Malinovskiy

Shilo North-East Interdisciplinary Research Institute, Far East Branch, Russian Academy of Sciences, Magadan, Russia; e-mail: gluhov76@list.ru

The article describes the Vetvistoe ore occurrence located in the Okhotsk segment of the Okhotsk-Chukotka volcanic belt. The ore field is confined to the exocontact of a large intrusion of late Cretaceous granitoids and is formed by Jurassic sedimentary rocks in which garnet-pyroxene skarns with Pb-Zn mineralization are developed after calcareous sandstones. Skarns are overlain by sericite-quartz beresites with disseminated Au-Ag-Bi-Te mineralization. Mineralization formed from initially high-temperature (600 °C) and highly concentrated (29–20 wt.% equiv. NaCl) boiling fluids of predominantly CaCl and LiCl composition coexisting with a volatile-rich phase. Boiling fluids were periodically diluted (up to 1 wt.% equiv. NaCl), with sulfur, oxygen, and tellurium fugacities and pH values changed. Vetvistoe differs from "classic" Pb-Zn skarn deposits in that carbonate rocks are less developed in the ore-bearing section and the superposition of Au-Ag-Bi-Te mineral parageneses occurred later.

Key words: skarns, Pb-Zn mineralization, granites, superposion, high-temperature, Okhotsk-Chukotka volcanic belt.