DOI: 10.30911/0207-4028-2024-43-3-47-63

УДК 550.8(571.5-571.6)

РЕКОНСТРУКЦИЯ ОСАДКОНАКОПЛЕНИЯ В АЛДАНО-МАЙСКОМ ОСАДОЧНОМ БАССЕЙНЕ (ЮГО-ВОСТОК СЕВЕРО-АЗИАТСКОГО КРАТОНА) НА ОСНОВЕ СЕЙСМОСТРАТИГРАФИЧЕСКОГО РАЗРЕЗА

Е.П. Развозжаева

ФГБУН Институт тектоники и геофизики ДВО РАН им. Ю.А. Косыгина, ул. Ким Ю Чена 65, г. Хабаровск, 680000; e-mail: rep@itig.as.khb.ru

Поступила в редакцию 31 июля 2023 г.

На основе сейсмостратиграфического разреза реконструирована история осадконакопления в Алдано-Майском осадочном бассейне. Реконструкции охватывают этапы формирования основных осадочных структур – рифейских (позднепротерозойских) Алданского и Юдомо-Майского прогибов, перекрывающих их венд-кембрийских отложений, а также периоды тектонических перестроек. Всего построено 10 реконструкций. Использование сейсмостратиграфического разреза с учетом геологических материалов для изучения истории формирования осадочного чехла способствует более обоснованному и наглядному представлению об эволюции рассматриваемой структуры на протяжении полутора миллиардов лет.

Ключевые слова: сейсмостратиграфический разрез, сейсмический комплекс, реконструкция, этапы осадконакопления, Алданский и Юдомо-Майский прогибы, Алдано-Майский осадочный бассейн, Северо-Азиатский кратон.

введение

Сейсмостратиграфический разрез позволяет непрерывно прослеживать осадочные комплексы, оценивать их мощности, фиксировать угловые несогласия и положение разломов, то есть представляет собой генерализованную структуру осадочного чехла седиментационного бассейна. Цель настоящей работы – с помощью сейсмостратиграфического разреза реконструировать эволюцию осадконакопления в Алдано-Майском бассейне седиментации. Под Алдано-Майским осадочным бассейном (АМОБ), в понимании авторов исследований [2, 3], имеется в виду область распространения отложений рифейвенд-кембрийского седиментогенеза на юго-востоке Северо-Азиатского кратона. В работе [14] показано, что современные границы АМОБ логично проводить по площади распространения рифейских отложений.

Для реконструкции истории осадконакопления выбран глубинный сейсмический разрез, практически полностью пересекающий Алдано-Майский осадочный бассейн в центральной его части (рис. 1). Не отработан сейсморазведкой только 30-ти километровый участок в районе пересечения линией разреза зоны Алдано-Майского разлома (рис. 1, 2, *a*). Использована интерпретация волновой картины, сделанная специалистами ООО «Якутскгеофизика» с некоторыми авторскими изменениями.

Линия разреза проходит по Алдано-Майской плите (АМП) и Кыллахской зоне надвигов (КЗН) Верхояно-Колымского складчато-надвигового пояса (ВСНП) и заканчивается Бурхалинским разломом (рис. 2, *a*). К структурам второго порядка, которые пересекает разрез, относятся (с запада на восток) нижнерифейский Алданский прогиб (по [11] Улкано-Кыл-

Рис. 1. Схема структур Алдано-Майского осадочного бассейна.

Основа - геологическая карта 1:2 500 000 масштаба (из ГИС-атласа по Дальневосточному региону, Санкт-Петербург, 2007).

^{1 –} граница бассейна; 2 – контур распространения нижнерифейских отложений; 3–4 – разломы: 3 – Алдано-Майский разлом, 4 – разломы Кыллахской зоны надвигов: а – Нелькано-Кыллахский, б – Гувиндинский, в – Челатский, г – Улахан-Бомский надвиги, д – Бурхалинский разлом; 5 – линия реконструируемого сейсмостратиграфического разреза; 6 – фрагменты демонстрируемых сейсмических разрезов с указанием номера рисунка; 7 – скважины глубокого бурения; 8 – населенные пункты.

Развозжаева

ская подсерия среднего рифея, RF₃lh – лахандинская серия верхнего рифея, RF₃usk – уйская серия верхнего рифея, V-E-(J) – венд-кембрийский (юрский) осадочный комплекс (нерасчлененный); 3 – разломы: а – нарушающие все сейсмокомплексы, 6 – проявленные в рифейских сейсмокомплексах, в – осложняющие нижнерифейский сейсмокомплекс; 4 - глубина от уровня моря; 5 - фрагменты разреза, приведенные на рис. 3 и 4, δ .

б – Разрез, полученный в результате проведенных реконструкций, детализированный по исходному разрезу.

Hp – высота рельефа. Стратиграфические индексы осадочных комплексов, соответствующих реконструируемым этапам: RF ₁uch – учурский, RF ₂aim+kr ₁ – аимчанско-нижнекерпыльский, RF_{2,4}kr₂+lh – верхнекерпыльско-лахандинский, RF₃usk – уйский, V-E-(J) – венд-кембрийский (юрский) нерасчлененный лахский рифт), Майско-Батомгское поднятие фундамента и Юдомо-Майский палеопрогиб, разбитый во время позднемезозойской тектонической активизации на Нельканскую, Гувиндинскую, Челатскую и Улахан-Бомскую надвиговые пластины (рис. 2, *a*).

По материалам предыдущих геолого-геофизических исследований территории АМОБ выделяются следующие этапы седиментации: учурский раннего рифея (RF,uch), аимчанский и керпыльский среднего рифея (RF,aim, RF,kr), лахандинский (RF,lh) и уйский (RF,usk) позднего рифея, венд-раннепалеозойский (V-Є, V-О) и юрский (J) (рис. 2, *a*) [3, 17, 19 и др.]. Значительные перерывы в осадконакоплении приходятся на рубеж между ранним и средним рифеем, между позднерифейским уйским и вендским этапами, между кембрийским и юрским этапами в пределах АМП (в КЗН палеозойское осадконакопление отличается большей стратиграфической полнотой). В эти промежутки проходили тектонические перестройки, которые фиксируются угловыми несогласиями, наблюдаемыми как геологическими, так и сейсмическими методами, значительными смещениями депоцентров седиментации.

МЕТОДИКА РЕКОНСТРУКЦИИ ИСТОРИИ ОСАДКОНАКОПЛЕНИЯ

Для определения исходных данных построения реконструкций был проведен анализ сейсмостратиграфического разреза. Стратиграфическая привязка отражающих горизонтов на разрезе осуществлена согласно выбранной стратиграфической модели, описанной в работе [14]. Одной из главных задач стал выбор этапов, которые, с одной стороны, должны совпадать с тектоно-седиментационными циклами, с другой стороны, вносить как можно меньше неопределенностей в построения. Поэтому в некоторых случаях разбивка на этапы непрерывного периода осадконакопления была обусловлена возможностью использования значений мощности отложений, не подвергавшихся размыву. В результате выбранные этапы включали: учурский этап осадконакопления и тектоническую перестройку на рубеже раннего и среднего рифея, аимчанско-раннекерпыльский, позднекерпыльско-лахандинский и уйский этапы формирования Юдомо-Майского палеопрогиба, предвендскую тектоническую перестройку, венд-раннепалеозойское (кембрийское) осадконакопление и позднепалеозойско-мезозойский этап, который включал в себя позднепалеозойское воздымание, юрское осадконакопление и последующее поднятие рассматриваемой территории. Завершает историю эволюции позднемезозойский этап надвигообразования в Кыллахской зоне.

Значения мощности сейсмических комплексов снимались с исследуемого разреза с интервалом в среднем 10 км. Поправки за величину уплотнения осадка при литификации не вводились. Для их введения необходимо знать на протяжении всего разреза процентное содержание типов пород. Разрез не пересекает глубокие скважины, а использование процентного содержания пород по скважине УМ-366, расположенной около 140 км севернее, могло внести неконтролируемые искажения в построения. Поправка за глубину морского бассейна также не вводилась. Все построения выполнялись с помощью табличного редактора Excel. Для определения неэродированной мощности осадочных комплексов анализировалась волновая картина сейсмических разрезов и привлекались геологические данные.

Первоначальная, донадвиговая ширина бассейна по линии разреза взята из работы [15]. Величина смещений по детачментам Нельканской, Гувиндинской и Челатской пластин для этого профиля составляет 15, 5 и 11 км, соответственно. Мелкомасштабные складчатые деформации не учитывались, поскольку визуально на сейсмостратиграфическом разрезе их доля не превышает первые километры, что при длине разреза в 420 км составляет менее одного процента.

РЕЗУЛЬТАТЫ АНАЛИЗА СЕЙСМОСТРАТИГРАФИЧЕСКОГО РАЗРЕЗА

Основой для построения реконструкций является информация, полученная при анализе сейсмостратиграфического разреза. Ниже приводится описание сейсмостратиграфических комплексов согласно выбранным этапам реконструкций.

Нижнерифейский (учурский) сейсмостратиграфический комплекс

С учурскими отложениями нижнего рифея на реконструируемом разрезе идентифицируется сейсмокомплекс (СК) в основании Алданского прогиба (рис. 2), увязанный по серии сейсмических профилей со скважиной Мокуйская 1, вскрывшей учурские отложения (1250 м), но не вышедшей из них [16]. Он представлен двумя сейсмофациями: нижней высокоамплитудной и верхней низкоамплитудной (рис. 3, 4, δ). Максимальная мощность СК по сейсмическим данным составляет 1800–1900 м. На севере АМОБ на сейсмических профилях в Кыллахско-Эбейке-Хаятинском сегменте сейсмокомплекс, предположительно увязываемый с учурским (хандинским) осадконакоплением, имеет мощность около 2.5 км [15].

Учурский СК имеет форму линзы, выклиниваясь в западном и восточном направлениях (рис. 2). В западном направлении фиксируется уменьшение

Рис. 3. Фрагмент сейсмостратиграфического разреза, демонстрирующий строение западного борта нижнерифейского сейсмокомплекса.

1 – отражающие границы: а – нижнерифейского, б – нижнекерпыльского, г – венд-нижнекембрийского, в – среднекембрийского сейсмокомплексов; *2* – стратиграфическая привязка сейсмокомплексов, *3* – разломы, проявленные в рифейских сейсмокомплексах.

мощности высокоамплитудной сейсмотолщи, на что указывает внутреннее схождение отражений и полное ее выклинивание (рис. 3). Верхняя сейсмотолща визуально имеет стабильную мощность и согласное взаимоотношение с вышележащим среднерифейским СК. Их выклинивание можно объяснить только совместным воздыманием и последующим размывом. Угловое несогласие рифейских сейсмокомплексов с перекрывающим венд-нижнекембрийским СК свидетельствует о том, что это произошло на этапе предвендской тектонической активизации. Разломная тектоника проявлена в виде субвертикальных разломов и мелких складок, осложняющих рифейский разрез и не затрагивающих венд-кембрийские отложения (рис. 3).

Восточный борт нижнерифейского (учурского) СК исследуемого разреза имеет более сложное строение (рис. 4, б), и для его сейсмофациального анализа приводятся фрагменты соседних сейсмических разрезов (рис. 4, а, б). Прежде всего, на всех разрезах отмечается хорошо выраженное угловое несогласие между нижнерифейским и среднерифейским сейсмокомплексами. На исследуемом северном разрезе учурский СК значительно разбит разломами по сравнению с вышележащими среднерифейскими сейсмокомплексами (рис. 4, б). На южном разрезе нарушенность и мелкая складчатость присуща всему рифейскому разрезу (рис. 4, a). На временном разрезе северного профиля в нижнерифейской части разломная тектоника проявлена слабо, и по нему удается выявить клиновидные сейсмофации, схождение отражений, характерные для наклонной поверхности седиментации согласно [16] (рис. 4, *в*). Это свидетельствует о существовании восточного поднятия при формировании учурского СК. Разломная тектоника, проявленная в нижнерифейском СК, служит признаком тектонической активизации на рубеже раннего и среднего рифея (рис. 4) и в предвендскую активизацию (рис. 3). Разломы субвертикальные, реже наклонные.

Аимчанско-нижнекерпыльский сейсмостратиграфический комплекс

Объединение аимчанской серии и нижнекерпыльской подсерии в один сейсмокомплекс обусловлено несколькими причинами. Во-первых, тем, что аимчанская серия не вскрыта глубокими скважинами, и сопоставление ее на волновой картине с определенными отражающими границами и сейсмофациями на сейсмическом разрезе носит условный характер. Чаще всего аимчанские отложения связывают с высокоамплитудной базальной пачкой в нижнекерпыльском комплексе, которая появляется в восточной части. Возможно, к ним относится вышележащая низкоамплитудная сейсмотолща [15]. Во-вторых, на сейсмических разрезах не наблюдается видимого несогласия между сейсмофациями, связываемыми с аимчанскими отложениями и перекрывающими их сейсмофациями, относимыми к нижнекерпыльскому СК (рис. 2, a). Кроме того, нижнекерпыльские отложения согласно перекрываются на протяжении большей части разреза вышележащей верхнекерпыльской малгинской свитой и, вероятнее всего, не подверга-

лись эрозии, сохраняя свою первоначальную мощность. Это очень важно при выборе этапа, потому что позволяет минимизировать количество неизвестных параметров при реконструкции.

Этот СК наиболее широко распространен как в исследуемом разрезе, так и в целом по площади АМОБ. Для нижнекерпыльских отложений отмечается стабильная мощность (около 900 м) в платформенной части. Локальное сокращение ее над восточным бортом нижнерифейского СК связано с остаточным рельефом последнего, вызванном поднятием и частичным размывом (рис. 2, а, 4, б). Стабильная мощность в платформенной части, согласное залегание с нижнерифейским и несогласное с венд-кембрийским СК свидетельствуют о выклинивании обоих рифейских СК на западе в результате предвендского воздымания и последующей эрозии. В восточном направлении мощность СК в платформенной части увеличивается за счет появления аимчанских отложений и небольшого роста мощности нижнекерпыльских отложений до ≈1000–1300 м (рис. 2, *a*). В КЗН мощность аимчанско-нижнекерпыльского СК возрастает, что наглядно продемонстрировано при пересечении Нельканского надвига сейсмическим профилем, расположенным севернее (рис. 5). При приближении к депоцентру мощность СК составляет в среднем 3500 м (рис. 2, *a*).

Позднекерпыльско-лахандинский сейсмостратиграфический комплекс

Позднекерпыльско-лахандинский СК включает карбонатную верхнекерпыльскую подсерию среднего рифея и позднерифейскую лахандинскую серию. На сейсмических разрезах углового несогласия между верхнекерпыльскими и лахандинскими осадочными комплексами не наблюдается (рис. 2, *a*). Можно предполагать, что тектонической перестройки и значительного размыва верхнекерпыльских отложений не происходило.

Площадь распространения осадочных отложений этого СК меньше, чем предыдущего. На реконструируемом разрезе сокращение площади связано с частичным размывом лахандинских и верхнекерпыльских отложений, с сокращением мощности отложений в западном направлении, которое более четко наблюдается на сейсмических разрезах, расположенных севернее [16], и с постседиментационным поднятием и размывом рифейских комплексов на западе (рис. 2, a).

На сейсмостратиграфическом разрезе наблюдается плавное нарастание мощности СК в платформенной части, не подвергшейся эрозии, от 900 м до 1300 м, и возрастание мощности СК в КЗН до 3300 м (рис. 2, a). На крайнем востоке в пределах Улахан-Бомской надвиговой пластины на сейсмическом разрезе можно предположить уменьшение мощности этого комплекса до 2500 м, хотя интерпретация в пределах Челатского и Улахан-Бомского надвигов довольно неоднозначна из-за крутых углов наклона (рис. 2, a).

Уйский сейсмостратиграфический комплекс

Площадь распространения уйского СК значительно меньше предыдущих сейсмокомплексов. Асимметричность строения этого СК наиболее ярко выражена (рис. 2, а). Градиент возрастания мощности в восточном направлении для уйского СК самый значительный. Мощность в платформенной части изменяется от 0 до 600 м, а в Кыллахской зоне возрастает до 4100 м (рис. 2, *a*, 5). По сейсмическим данным наблюдается согласное залегание уйского и верхнекерпыльско-лахандинского сейсмокомплексов в АМП и Нельканской и Гувиндинской аллохтонах. На крайнем востоке, в Челатской и Улахан-Бомской надвиговых пластинах интерпретация волновой картины осложняется из-за относительно крутых углов наклона, отсутствия сейсмической информации восточнее Бурхалинского разлома, что вносит неопределенность в проведение границ сейсмокомплексов (рис. 2, *a*).

Венд-раннепалеозойский и юрский сейсмостратиграфические комплексы

На исследуемом разрезе СК, отвечающий вендраннепалеозойским образованиям, прослеживается фрагментарно. Только в северо-западной части в междуречье рек Алдан и Амга его мощность составляет более 1000 м (рис. 2, *a*, 3). В этой части разреза хорошо прослеживаются отражающие горизонты, связанные с подошвой венда и подошвой среднекембрийских отложений. Выше регулярная сейсмическая запись практически отсутствует. Здесь на поверхность выходят юрские отложения (рис. 1), но выделить их

Рис. 4. Фрагменты глубинных (*a*, *б*) и временного (*в*) сейсмостратиграфических разрезов, демонстрирующих строение восточного борта нижнерифейского сейсмокомплекса.

Положение разрезов см. на рис. 1, 2, а.

I – отражающие границы: а – нижнерифейского, б – аимчанско-нижнекерпыльского, в – верхнекерпыльско-лахандинского, г – венднижнекембрийского, д – среднекембрийского сейсмокомплексов; *2* – стратиграфическая привязка сейсмокомплексов; *3* – разломы: а – нарушающие все сейсмокомплексы, б – проявленные в рифейских сейсмокомплексах, в – осложняющие нижнерифейский сейсмокомплекс, г – в фундаменте.

Рис. 5. Изменение мощности сейсмических комплексов до и после Нельканского надвига на примере глубинного сейсмического разреза.

Положение разреза см. на рис. 1.

в отдельный СК не представляется возможным из-за отсутствия отражающих границ и малой мощности (рис. 3).

В центральной части АМП на сейсмостратиграфическом разреза наблюдается значительный размыв рассматриваемого СК (рис. 2). Он трудно диагностируем из-за небольшой мощности и расположения в верхней части разреза на пределе разрешающей способности сейсмического метода. Юрские отложения здесь отсутствуют. По направлению к северо-востоку размыв венд-раннепалеозойского СК уменьшается, на поверхность выходят юрские отложения (рис. 1). Мощность их также увеличивается в этом направлении, и на сейсмических разрезах появляется отражающий горизонт, увязываемый по скважине Усть-Майская 366 с подошвой юрских отложений (рис. 6) [14]. По волновой картине видно, что юрский СК образует угловое несогласие с подстилающим венд-кембрийским СК.

В КЗН мощности этих комплексов возрастают. По сейсмостратиграфическому разрезу оценить их значения проблематично из-за неоднозначности интерпретации волновой картины в пределах надвиговых пластин (рис. 2, a). На волновой картине исследуемого разреза в Челатском и Улахан-Бомском надвигах, где предполагаются наибольшие мощности всех осадочных комплексов, не совсем ясны границы между лахандинскими, уйскими и вендскими комплексами (рис. 2, a). Поэтому предлагаемая интерпретация является лишь наиболее обоснованным вариантом, учитывающим известные геологические данные. Согласно ей, мощность венд-палеозойского комплекса на крайнем востоке КЗН составляет 2500 м.

Разломная тектоника

По нарушенности отражающих границ можно сделать вывод о проявлении нескольких этапов тек-

Рис. 6. Фрагмент сейсмостратиграфического разреза: временного (*a*) и глубинного (*б*), демонстрирующий угловое несогласие юрского сейсмокомплекса с нижележащим среднекембрийским.

тогенеза за время формирования осадочного чехла АМОБ. Выделяются нарушения только в пределах нижнерифейского СК, разломы, затронувшие все рифейские СК, и разломы, которые нарушают весь осадочный разрез, включающий отложения от нижнего рифея до средней юры (рис. 2, *a*). Наиболее четко на сейсмических разрезах выражены надвиги Кыллахской зоны, сопровождающиеся фронтальными взбросо-складками и рамповыми складками, в значительной степени эродированными [15] (рис. 2, *a*). Надвиги на глубине сливаются в единый детачмент, проходящий в рассматриваемом разрезе в нижнекерпыльском СК в Нельканском и Гувиндинском аллохтонах, а в Челатском – по границе фундамента (рис. 2, *a*) [17]. Заканчивается Кыллахская зона Бурхалинским разломом, восточнее которого регулярная сейсмическая запись отсутствует (рис. 2, *a*).

Зона Алдано-Майского разлома, к сожалению, не пересечена сейсморазведкой. Можно только отметить, что западнее ее осадочный разрез погружен по сравнению с восточной частью не менее чем на 500 м. Вероятно, зона Алдано-Майского разлома нарушает весь осадочный разрез АМОБ, о чем свидетельствует отрезок между 130–140 км, где сейсмическая информация представлена хаотической сейсмофацией (рис. 2, *a*). Широко распространены субвертикальные разломы, нарушающие все рифейские сейсмокомплексы (рис. 2, a, 3, 4). Они имеют преимущественно небольшую амплитуду, но иногда она может составлять сотни метров (рис. 4). В пределах нижнерифейского СК четко фиксируется серия разломов по нарушению высокоамплитудной толщи в основании СК (рис. 4, δ). Часть разломов, скорее всего, была реактивирована в более поздний предвендский тектонический этап (рис. 2, a, 4, δ).

построение реконструкций

Ранний рифей. Учурский этап осадконакопления и тектоническая перестройка на рубеже раннего и среднего рифея

В раннем рифее происходит осадконакопление в Алданском, Учурском прогибах и серии реликтовых впадин на юге АМОБ [2, 5 14, 16 и др.]. Учурский этап включает отложения трех свит: гонамской, омахтинской и эннинской. Предполагается, что разобщенные впадины вместе с Учурским прогибом слагали единую пра-Учурскую впадину, западный борт которой ограничивала область поднятий Алданского щита [17]. Отмечается выклинивание нижнеучурских отложений в западном направлении [22]. Кроме того, в гонамское время прогнозируется существование восточного поднятия. Размеры первичного бассейна ненамного превосходили существующие в настоящее время для гонамской свиты, поскольку в Учурской впадине фиксируются краевые фации. В омахтинское и эннинское время предполагается расширение площади седиментации в южном направлении [17]. В предкерпыльское время или на рубеже учурского и аимчанского времен территория испытывала поднятие, которое в пределах пра-Учурской впадины вызвало воздымание и размыв ее восточного борта [17]. Мощность учурской серии значительно варьирует. В северной части АМОБ нижнерифейские отложения прослежены во фронте Кыллахского, Эбейке-Хаятинского надвигов и в ядре Горностахской антиклинали. На протяжении 80 км мощность хандинских отложений возрастает от 1500 м до 3000-3900 м [4, 7, 10, 19, 23]. Отмечается, что эти отложения отличаются от учурского стратотипа тем, что накапливались в более активно развивающемся бассейне [10, 22].

Сравнивая имеющиеся геологические данные с интерпретацией сейсмического профилирования, можно сделать следующие выводы. Формирование гонамского осадочного комплекса происходило в ограниченном по площади бассейне, о чем свидетельствует уменьшение мощности в направлении к бортам, выявленное по рисунку сейсмофаций и геологическим данным. Максимальная мощность учурского комплекса предполагается не менее 2 км в районе реконструируемого разреза. Западный борт окончательно сформировался в предвендское время, когда произошло поднятие территории Алданского щита. Выклинивание учурского осадочного комплекса в восточном направлении произошло на рубеже раннего и среднего рифея в результате тектонической перестройки, связанной с ростом Батомгско-Майского поднятия [1 и др.]. Восточный борт был разбит разломами, взброшен и частично размыт.

На основе вышеизложенной фактуры предложена реконструкция раннерифейских отложений к концу осадконакопления (рис. 7, *a*). Воздымание восточного крыла на рубеже раннего и среднего рифея показано на реконструкции (рис. 7, δ). Эрозия и размыв большей части образовавшего поднятия и формирование восточного борта Алданского прогиба приведены на реконструкции (рис. 7, δ).

Средний-поздний рифей. Формирование Юдомо-Майского прогиба

Период формирования Юдомо-Майского прогиба (ЮМП) разбит на три этапа: аимчанско-раннекерпыльский, позднекерпыльско-лахандинский и уйский. Каждый из этапов имеет свои особенности седиментогенеза, хотя в целом они составляют единый цикл осадконакопления в ЮМП.

Аимчанско-раннекерпыльский этап. Аимчанский седиментогенез играл важную роль в процессе эволюции АМОБ. Он ознаменовал начало формирования ЮМП [17]. Сформировавшееся на рубеже раннего и среднего рифея Майско-Батомгское поднятие привело к смещению депоцентра седиментации далеко на восток. Существование поднятия ограничивало распространение аимчанской серии в западном направлении. На восток ее мощность увеличивается до 1400–1800 м [17].

Керпыльская трансгрессия была наиболее значимой в истории осадконакопления АМОБ [17]. Между аимчанским и раннекерпыльским осадконакоплением отмечается небольшой перерыв, который существенно не повлиял на режим седиментации. Отметим также, что в аимчанско-раннекерпыльский этап нака-

Рис. 7. Реконструкции истории осадконакопления Алдано-Майского осадочного бассейна и эволюции рифейских структур Алданского и Юдомо-Майского прогибов.

пливались преимущественно терригенные отложения [6]. Краевые фации западного источника в раннекерпыльском седиментогенезе не проявлены [17]. Предполагается, что средне- и позднерифейские отложения изначально перекрывали большую часть востока Сибирской платформы [19].

Учитывая имеющуюся сейсмическую и геологическую информацию, представлена реконструкция аимчанско-нижнекерпыльского этапа (рис. 7, в). Предполагается, что размыва нижнекерпыльских отложений практически не происходило, поэтому мощность аимчанско-керпыльских отложений взята равной ее значению на сейсмическом разрезе. Как видно из полученной реконструкции значительное увеличение мощности происходило на востоке, в районе современной КЗН (рис. 7, в, 8, а). В пределах платформенной части мощность была практически постоянной (≈900 м), постепенно возрастая в восточном направлении до 1300 м. В КЗН в Нельканской пластине она достигла 1900 м, в Гувиндинском аллохтоне градиент увеличения мощности резко возрастает. На расстоянии в 35 км мощность с 1900 м выросла до 3700 м. Существует предположение, что современные надвиги первоначально представляли собой сбросы [23 и др.]. Тогда можно предположить, что Нельканский и Гувиндинский сбросы на этом этапе были наиболее активными. В Челатском надвиге мощность аимчанско-нижнекерпыльским отложений составила 3500 м.

Позднекерпыльско-лахандинский этап характеризуется преобладанием карбонатного осадконакопления над терригенным [9]. По геологическим наблюдениям, перед началом лахандинской седиментации в западной части бассейна существовал кратковременный перерыв с образованием коры выветривания, который в северном и восточном направлениях не прослеживается [3, 17 и др.]. Отмечается, что лахандинское осадконакопление носило трансгрессивно-регрессивный характер. Для терригенных пород лахандинской серии по вещественному составу определяется связь с западным источником, однако, судя по гранулометрии, он располагается еще достаточно далеко [17]. На юге по геологическим данным наблюдается некоторое сокращение мощности верхнекерпыльских отложений в самых крайних восточных выходах по р. Малый Комуй [17].

В результате сопоставления сейсмической и геологической информации реконструкция этого этапа предполагает, что в платформенной части мощность этого комплекса была практически постоянной, равной 900 м (рис. 7, г, 8, б). В КЗН максимальным градиентом увеличения мощности характеризуется Нельканский надвиг, где мощность возрастает с 1300 м до 2700 м, в меньшей степени Челатский, в котором мощность нарастает до 3300 м. Можно предположить, что в период накопления этого комплекса активными были Нельканский и Челатский сбросы (рис. 8, б).

Уйский этап. Уйский этап венчает осадконакопление в ЮМП. Площадь седиментации в это время значительно сокращается (рис. 2, *a*, 7, *d*). Считается, что этот этап является рифтогенным, так как сопровождается магматизмом основного состава, значительными изменениями условий осадконакопления, резким возрастанием мощности [23 и др.]. Осадконакопление было преимущественно терригенным. Впервые встречаются фации континентального склона, и явно обозначается восточный источник сноса [17, 23].

По сейсмическим данным также предполагается резкое увеличение мощности уйского комплекса на крайнем востоке рассматриваемого разреза (рис. 7, *д*). По градиенту возрастания мощностей активными в период осадконакопления, вероятно, стали Гувиндинский и Улахан-Бомский сбросы (рис. 8, *в*).

Предвендская тектоническая перестройка

Стабильная мощность в платформенной части верхней сейсмотолщи учурского СК, аимчанско-нижнекерпыльского и верхнекерпыльско-лахандинского сейсмокомплексов, их согласное залегание между собой и несогласное – с венд-кембрийским СК свидетельствуют о формировании западного борта АМОБ в результате предвендского воздымания и последующей эрозии (рис. 2, а, 3). Из этого следует, что предвендская тектоническая активизация на рассматриваемой территории привела к поднятию (рис. 7, е) и размыву (рис. 7, ж) западного борта палеобассейна. Максимальный размыв составил 2700 м, что не противоречит величине размыва рифейских отложений по геологическим данным, составляющей 2500 м [19]. Таким образом, западная граница АМОБ окончательно сформировалась в предвендское время (рис. 7, ж).

Венд-раннепалеозойский этап осадконакопления

Предполагается, что осадконакопление этого этапа охватывало значительную часть территории Сибирской платформы и Верхоянского складчато-надвигового пояса и длилось с венда до раннего девона [19]. Максимум трансгрессии моря на Сибирский континент приходится на ранний-средний кембрий. Начиная с позднего кембрия происходит постепенное отступление моря, которое завершается в раннем девоне общим поднятием восточной части платформы и размывом.

В АМОБ от этого этапа сохранились вендские, кембрийские и ордовикские отложения, причем в

Рис. 8. Увеличение мощности осадконакопления в восточной части реконструируемого разреза для аимчанско-нижнекерпыльского (*a*), позднекерпыльско-лахандинского (*б*) и уйского этапов (*в*) в результате действия сбросов.

пределах Алдано-Майской плиты последние не обнаружены [6, 7]. Они зафиксированы локально в КЗН. Предполагается, что восходящие движения, приведшие к воздыманию, начались на рубеже кембрия и ордовика [6]. Осадконакопление сместилось на восток, преимущественно в Сетте-Дабанскую зону. В скважинах Нижнеамгинской 1, Мокуйской 1, Усть-Майской 366, пробуренных на территории АМОБ и в его ближайшем окружении (рис. 1), на кембрийских породах залегают непосредственно юрские отложения. Мощность венд-кембрийского комплекса в этих скважинах составляет: 1020 м, 1153 м, в 1079 м, соответственно.

На реконструируемом разрезе в междуречье рек Алдан и Амга мощность венд-кембрийских отложений оценивается в среднем более 1000 м. Исходя из сейсмических и скважинных данных, для реконструкции этого этапа мощность была взята 1300 м (рис. 9, *a*).

В КЗН по геологическим данным мощность венда составляет 550 м, а кембрия – 1600 м в районе р. Горби в непосредственной близости от исследуемого разреза [11]. Мощность ордовикско-силурийских отложений на границе КЗН и Сетте-Дабанской зоны составляет 1300 м, а только нижне-среднеордовикской саккырырской свиты, выход на поверхность которой наблюдается на линии рассматриваемого разреза, составляет 500–1800 м [6]. В раннем девоне осадконакопления не происходило, перерыв сменился рифтогенезом на востоке с внедрением силлов и даек долеритов. Таким образом, общая мощность венд-ордовикского комплекса по данным геологических съемок может составлять не менее 2650 м. По сейсмическим данным предполагается 2500 м. В реконструкции мощность венд-палеозойских отложений была принята 2550 м (рис. 2, *a*, 9, *a*).

Позднепалеозойско- мезозойский этап

В КЗН в карбоне и перми ограниченно накапливались терригенные шельфовые отложения [7]. Предполагается существование с позднего карбона и до ранней юры палеоречной системы (палео-Алдан) [7, 13]. Она поставляла осадки для Верхоянской пассивной континентальной окраины, где в это время накапливались с большой скоростью склоновые терригенные отложения.

В пределах платформенной части уже с позднего кембрия происходит воздымание территории. Судя Развозжаева

Рис. 9. Реконструкция истории осадконакопления Алдано-Майского осадочного бассейна, венд-палеозойский и мезозойский этапы.

по распределению мощностей венд-кембрийского возраста, по геологическим и сейсмическим данным, наибольший подъем происходил на юге, а на рассматриваемом разрезе – в районе Майско-Батомгского поднятия.

Мезозойские отложения в АМОБ представлены нижней и средней юрой. Предполагается, что в раннеюрское время северная часть Алданского щита испытывала равномерное погружение, о чем свидетельствует выдержанность мощности нижнеюрских отложений (в пределах 350–450 м) [21]. В КЗН мощность юрских отложений увеличивается до 950–1060 м [6, 18, 19]. Поскольку на исследуемом сейсмостратиграфическом разрезе юрские отложения либо отсутствуют, либо небольшой мощности, отдельно этап юрского осадконакопления не рассматривается.

60

Реконструкция воздымания и размыва венд-кембрийских и юрских отложений сделана на основе осреднения современного рельефа (рис. 9, δ).

Мезозойский этап надвигообразования

В поздней юре началось надвигообразование в КЗН, связанное с движением Охотского мегаблока [19, 20]. Движения по пологим надвигам не затрагивали фундамент, детачмент проходил внутри осадочного чехла, параллельно слоистости, или по фундаменту. Самые ранние деформации фиксируются на севере АМОБ в районе Горностахской антиклинали [8, 12]. На севере КЗН перемещения были самыми значительными, около 90 км по данным [19]. На юге АМОБ сжатие было наименьшим и составляло менее 20 % (16 %, по [15]) против 40–50 % на севере.

Для исследуемого сечения суммарное (минимальное) сокращение предполагается 31 км [17]. Смещение Нельканской надвиговой пластины составило 15 км, Гувиндинской – 5 км и Челатской 11 км. Сокращением до ширины современного разреза получена реконструкция мезозойской тектонической перестройки (рис. 9, ε). Ввиду дискретности снятия значений мощности полученная реконструкция отличается от исходного разреза, представленного на рис. 2, a. На рисунке 2, δ на реконструкцию дополнительно вынесены разломы и надвиги и детализировано положение границ осадочных комплексов согласно рисунку 2, a.

ЗАКЛЮЧЕНИЕ

Реконструкция истории осадконакопления в Алдано-Майском осадочном бассейне проведена на основе сейсмостратиграфического разреза. Построено 10 реконструкций, показывающих формирование основных осадочных структур – рифейских Алданского и Юдомо-Майского прогибов и перекрывающих их венд-кембрийских отложений, а также разделяющих их тектонических перестроек.

Завершение раннерифейской (учурской) седиментации демонстрирует первая реконструкция (рис. 7, *a*). Вторая реконструкция показывает тектоническую активизацию на рубеже раннего и среднего рифея, в результате которой произошел рост Майско-Батомгского поднятия, сопровождавшийся разломами и воздыманием восточного края учурского комплекса (рис. 7, δ).

Образовавшееся поднятие, вероятно, препятствовало дальнейшему осадконакоплению. Оно возобновилось в аимчанское время среднего рифея, при этом депоцентр седиментации сместился на восток, приблизительно на 300 км. Началось формирование Юдомо-Майского прогиба. Осадконакопление в нем длилось на протяжении всего среднего и позднего рифея. Общая мощность накопившихся в ЮМП осадков составила более 10 км. Реконструкции сделаны для аимчанско-раннекерпыльского, позднекерпыльско-лахандинского и уйского времени (рис. 7, *в*–*д*). Для всех этапов характерно асимметричное осадконакопление с максимумом седиментации на востоке, вероятно, в результате действия сбросов (рис. 7, 8). В пределах плитной части на двух первых этапах мощность осадочных комплексов стабильна и предполагается, что осадконакопление продолжалось в западном направлении за пределы рассматриваемой площади.

Аимчанско-раннекерпыльскому этапу осадконакопления соответствует третья реконструкция (рис. 7, в). Большая часть Майско-Батомгского поднятия была эродирована. В результате окончательно сформировался восточный борт Алданского прогиба. Активными на этом этапе были Нельканский и Гувиндинский сбросы.

В позднекерпыльско-лахандинский этап продолжилось осадконакопление в ЮМП (рис. 7, ϵ). Сокращение площади распространения осадочных отложений этого этапа по сравнению с предыдущим связано в большей степени с предвендским размывом. Следует отметить, что на сейсмических разрезах северной части АМОБ четко прослеживается уменьшение мощности лахандинской серии в западном направлении. По геологическим наблюдениям, лахандинское осадконакопление носило трансгрессивно-регрессивный характер. Возрастание мощности в восточной части на этом этапе связано с активностью Нельканского и Челатского сбросов (рис. 8, δ).

Завершение осадконакопления в ЮМП демонстрирует реконструкция для уйского этапа. На этом этапе площадь бассейна значительно сократилась, а мощность в восточной части значительно возросла за счет активизации Гувиндинского и, вероятно, Улахан-Бомского сбросов (рис. 7, *д*).

В предвендское время сформировалась западная граница АМОБ в результате воздымания территории и размыва преимущественно западного борта палеобассейна (рис. 7, *e*, ж). Максимальный размыв составил приблизительно 2.7 км.

Венд-раннепалеозойское осадконакопление распространялось далеко за пределы рассматриваемого бассейна. Предполагаемая мощность этого осадочного комплекса составляла на АМП 1300 м, увеличиваясь в КЗН до 2550 м (рис. 9, *a*). С позднего кембрия в плитной части началось воздымание. В КЗН седиментация продолжалась до раннего девона, а в исследуемом районе до ордовика.

Позднепалеозойский и ранне-среднеюрский этапы осадконакопления не рассматривались, поскольку

Развозжаева

эти отложения в районе реконструируемого разреза отсутствуют. Юрские отложения небольшой мощности сохранились в северо-западной части разреза, но на сейсмостратиграфическом разрезе они не диагностируются.

Позднеюрско-меловому тектогенезу предшествовал подъем территории, который в большей степени проявился в южной части АМОБ, а на рассматриваемом разрезе – в области Майско-Батомгского поднятия. Реконструкция воздымания и размыва вендпалеозойских и юрских отложений сделана на основе осреднения современного рельефа (рис. 9, *б*).

Надвиговые деформации в КЗН происходили в течение нескольких десятков миллионов лет с поздней юры до позднего мела. Вероятно, на юге АМОБ они были менее интенсивными, чем на севере. Общее сокращение ширины бассейна в результате надвиговых деформаций для реконструируемого разреза составило как минимум 31 км (рис. 9, *в*).

Подводя итог проделанной работе, можно сделать вывод, что использование сейсмостратиграфического разреза с учетом геологических материалов для изучения истории формирования осадочного чехла АМОБ способствует более обоснованному и наглядному представлению об эволюции рассматриваемой структуры на протяжении полутора миллиардов лет.

Автор глубоко благодарен рецензентам за внимание к работе, конструктивные замечания и полезные советы.

Работа выполнена за счет субсидий на выполнение государственного задания ИТиГ ДВО РАН (тема № 121021000095-1).

СПИСОК ЛИТЕРАТУРЫ

- Берзин А.Г., Оболкин АП., Севостьянов С.Ю., Егошин А.А., Дьяконова В.А. Новые данные по геологии Алдано-Майского прогиба // Отеч. геология. 2011. № 6. С. 21– 26.
- 2. Варнавский В.Г., Кузнецов В.Е. Область рифей-венд-кембрийского седиментогенеза юго-восточной окраины Северо-восточного кратона // Тихоокеан. геология. 2011. Т. 31, № 5. С. 67–79.
- Варнавский В.Г. Алдано-Майский осадочный бассейн (Юго-Восток Северо-Азиатского кратона): литостратиграфия докембрия, кембрия // Тихоокеан. геология. 2015. Т. 34, № 2. С. 82–102.
- 4. Геология Якутской АССР. М.: Недра, 1981. 300 с.
- Горошко М.В., Гурьянов В.А. Мезо-неопротерозойские комплексы чехла юго-востока Сибирской платформы: условия образования и основные черты тектоники // Геотектоника. 2008. № 2. С. 80–96.
- Дымович В.А., Васькин А.Ф., Опалихина Е.С., Кисляков С.Г. и др. Государственная геологическая карта Российской Федерации. 1:1 000 000 (третье поколение). Серия Дальневосточная. Лист О-53 – Нелькан: Объясн. зап. СПб.:

Картографическая фабрика ВСЕГЕИ, 2012. 364 с. + 2 вкл.

- Казакова Г.Г., Тутасова Е.Н., Худолей А.К. и др. Государственная геологическая карта Российской Федерации.
 1:1 000 000. Третье поколение. Серия Верхояно-Колымская. Лист Р-53 – Хандыга: Объясн. зап. Минприроды России, Роснедра, ФГБУ ВСЕГЕИ. СПб.: Изд-во ВСЕГЕИ, 2021. 431 с. + 8 вкл.
- Малышев С.В., Худолей А.К., Гласмахер У.А., Казакова Г.Г., Калинин М.А. Определение этапов формирования юго-западной части Верхоянского складчато-надвигового пояса по данным трекового датирования апатита и циркона // Геотектоника. 2018. № 6. С. 55–68.
- Матвеев А.В., Добкин С.Н., Арапов В.Н., Кременецкая Н.А. Государственная геологическая карта Российской Федерации. 1:200 000. Издание второе. Серия Майская. Лист О-53 – XI: Объясн. зап. / Под ред. Г.Р. Роганова. СПб.: Картографическая фабрика ВСЕГЕИ, 2010. 101 с.
- Мельников Н.В., Якшин М.С., Шишкин Б.Б. и др. Стратиграфия нефтегазоносных бассейнов Сибири. Рифей и венд Сибирской платформы и ее складчатого обрамления. Новосибирск: Академическое изд-во «Гео», 2005. 428 с.
- 11. Оболкин А.П. Построение поверхности кристаллического фундамента Алдано-Майского прогибапо материлам сейсмо-, грави- и магниторазведки // Тектоника, глубинное строение и минерагения Востока Азии: Х Косыгинские чтения: Материалы Всерос. конф., 10–12 сентября 2019 г., г. Хабаровск / Отв. ред. А.Н. Диденко, Ю.Ф. Манилов. Хабаровск: ИТиГ ДВО РАН, 2019. С. 85–87.
- Прокопьев А.В., Торо Х., Думитру Т.А., Миллер Э.Л. Мезозойский орогенез в Южном Верхоянье // Геология и минерально-сырьевые ресурсы Северо-Востока России: Материалы VII Всерос. науч.-практ. конф. Якутск: Издательский дом СВФУ, 2017. Т. 2. С. 203–207.
- Прокопьев А.В., Торо Х., Миллер Э.Л. Позднепалеозойско-мезозойская палеогеография Южного Верхоянья по данным U-Pb датирования обломочных цирконов // Природные ресурсы Арктики и субарктики. 2018. Т. 26, № 4. С. 5–15.
- Развозжаева Е.П. Сейсмостратиграфическая модель Алдано-Майского осадочного бассейна (юго-восток Сибирской платформы) // Тихоокеан. геология. 2020. Т. 39, № 6. С. 25– 47.
- Развозжаева Е.П., Талтыкин Ю.В. Строение Кыллахской зоны (Южный сектор Верхоянского складчато-надвигового пояса) по материалам сейсмического профилирования // Тихоокеан. геология. 2023. Т. 42, № 1. С. 3–21. DOI: 10.30911/0207-4028-2023-42-1-3-21
- 16. Сейсмическая стратиграфия // Ред. Ч. Пейтон. Ч. 1. М.: Мир, 1982. 375 с.
- 17. Семихатов М.А., Серебряков С.Н. Сибирский гипостратотип рифея. М.: Недра, 1983. 223 с. (тр. ГИН АН СССР. Вып. 367. 234 с.)
- Сластенов Ю.Л., Гриненко В.С., Петров В.Б., Сапьяник В.В. Новые данные по стратиграфии морских юрских отложений Лено-Алданского мождуречья // Геология и геофизика. 1989. № 11. С. 139–142.
- Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). М.: МАИК «Наука/Интерпериодика», 2001. 571 с.
- 20. Третьяков Ф.Ф. Современные аспекты тектонического

строения Южно-Верхоянского синклинория // Тихоокеан. геология. 2021. Т. 40, № 3. С. 103–113. DOI: 10.30911/0207-4028-2021-40-3-103-113

- 21. Шенфиль В.Ю. Поздний докембрий Сибирской платформы. Новосибирск: Наука, 1991. 185 с.
- 22. Khudoley A.K., Rainbird R.H., Stern R.A., Kropachev A.P., Heaman L.M., Zanin A.M., Podkovyrov V.N., Belova V.N., Sukhorukov V.I. Sedimentary evolution of the Riphean-Vendian basin of southeastern Siberia // Precambrian Research 111. 2001. P. 129–163.
- Khudoley A.K., Guriev G.A. Influence of syn-sedimentary faults on orogenic structure:examples from the Neoproterozoic– Mesozoic east Siberian passive margin // Tectonophysics. 2003. V. 365. P. 23–43.

Рекомендована к печати Г.Л. Кирилловой после доработки 12.12.2023 г. принята к печати 11.01.2024 г.

E.P. Razvozzhaeva

Sedimentation history of the Aldan-Maya sedimentary basin (southeast of the North Asian craton) reconstructed from a seismostratigraphic section

Sedimentation history of the Aldan-Maya sedimentary basin was reconstructed based on the seismostratigraphic section. A total of 10 reconstructions cover the stages of formation of the main sedimentary structures - the Riphean (Late Proterozoic) Aldan and Yudoma-Maya troughs, overlying Vendian-Cambrian deposits, as well as periods of tectonic restructuring. Studies that use a seismostratigraphic section and geological data to investigate the formation of the sedimentary cover contribute to a more substantiated and visual understanding of the evolution of the structure in question over one and a half billion years.

Key words: seismostratigraphic section, seismic complex, reconstruction, stages of sedimentation, Aldan and Yudoma-Maya troughs, Aldan-Maya sedimentary basin, North Asian craton.