DOI: 10.30911/0207-4028-2024-43-2-40-58

УДК 552.5: 550.42:550.93

ИСТОЧНИКИ И ПАЛЕОГЕОДИНАМИЧЕСКАЯ ОБСТАНОВКА НАКОПЛЕНИЯ ТЕРРИГЕННЫХ ОТЛОЖЕНИЙ НИЖНЕКЕМБРИЙСКОЙ БЫСТРИНСКОЙ СВИТЫ АРГУНСКОГО МАССИВА

Ю.Н. Смирнова¹, А.В. Куриленко^{2,3}, В.Б. Хубанов², С.И. Дриль^{3,4}

¹ФГБУН Институт геологии и природопользования ДВО РАН, пер. Релочный 1, г. Благовещенск, 675000; e-mail: smirnova@ascnet.ru

²ФГБУН Геологический институт им. Н.Л. Добрецова СО РАН, ул. Сахьяновой ба, г. Улан-Удэ, 670047; e-mail: khubanov@mail.ru

³ФГБУ Всероссийских научно-исследовательских геологический институт А.П. Карпинского, Средний проспект 74, г. Санкт-Петербург, 199106; e-mail: alena kurilenko@mail.ru

⁴ФГБУН Институт геохимии им. А.П. Виноградова СО РАН, ул. Фаворского 1А, г. Иркутск, 664033; e-mail: sdril@igc.irk.ru

Поступила в редакцию 24 февраля 2023 г.

В публикации приведены результаты минералого-геохимических, изотопно-геохимических (Sm-Nd) исследований алевролитов верхней подсвиты быстринской свиты Аргунского континентального массива, а также U-Pb датирования зерен детритового циркона из них. Главной целью исследований являлось выявление основных источников сноса кластического материала, реконструкция палеогеодинамической обстановки накопления и уточнение нижней возрастной границы формирования терригенных пород верхней подсвиты быстринской свиты. Особенности вещественного состава исследованных пород свидетельствуют о накоплении их в обстановке, связанной с субдукционными процессами. Микроэлементный состав алевролитов подсвиты указывает на присутствие в области сноса пород смешанного по кремнекислотности состава. Согласно результатам Sm-Nd изотопно-геохимического исследования установлено, что основными источниками сноса кластического материала для алевролитов стратона являлись породы палеопротерозойского возраста и (или) более молодые образования, формирование которых связано с переработкой континентальной коры палеопротерозойского возраста. В изученном образце алевролитов верхней подсвиты быстринской свиты доминирующая часть цирконов характеризуется нео- и палеопротерозойскими значениями возраста. Их источниками, вероятно, являются нео- и палеопротерозойские магматические образования, распространенные в пределах Аргунского массива на территории Китая. Согласно возрасту наиболее молодых цирконов (556 ± 9 и 566 ± 10 млн лет), выделенных из алевролитов верхней подсвиты быстринской свиты, нижняя граница их накопления приходится на середину эдиакария.

Ключевые слова: кембрий, осадочные породы, геохимия, Sm-Nd данные, U-Pb датирование, Аргунский массив, восточное Забайкалье.

введение

Аргунский (Аргун-Идермегский) континентальный массив (супертеррейн) является одним из главных структурных элементов восточной части Центрально-Азиатского складчатого пояса (рис. 1, а, врезка) [4]. Этот массив представляет собой сложный коллаж разновозрастных и различных по составу геологических комплексов. В северо-западной части массива докембрийские осадочные породы рассматриваются в составе среднерифейской надаровской свиты, верхнерифейской даурской серии и вендской быркинской серии [10]. Кембрийские осадочные породы объединены в состав аргунской серии. В последние годы авторами проведены комплексные исследования осадочных пород даурской и быркинской серий Аргунского массива, которые внесли существенный вклад в реконструкцию докембрийской истории формирования массива [6, 7].

К одним из наименее исследованных пород относятся осадочные комплексы раннепалеозойского

возраста. На территории восточного Забайкалья в пределах Аргунского массива к раннепалеозойскому этапу развития отнесены осадочные породы нижнекембрийской быстринской свиты и условно нижне-среднекембрийской ерниченской толщи аргунской серии. В составе быстринской свиты преобладают известняки и доломиты, в виде прослоев отмечаются терригенные отложения. Для пород стратона характерна фациальная изменчивость и слабая обнаженность. Возраст свиты принят на основе определения органических остатков, выявленных в её средней части. Однако многие вопросы, касающиеся времени и условий накопления терригенной части свиты, дискуссионны. В этой связи нами были проведены геологические, минералого-геохимические, изотопно-геохимические (Sm-Nd) исследования алевролитов верхней подсвиты быстринской свиты, а также U-Pb датирование зерен детритового циркона из них, направленные на уточнение нижней возрастной границы их накопления, выявление основных источников сноса кластического материала и реконструкцию палеогеодинамической обстановки формирования.

КРАТКАЯ ХАРАКТЕРИСТИКА ОБЪЕКТА ИССЛЕДОВАНИЙ

Осадочные породы быстринской свиты прослеживаются от бассейна рек Борзя и Урулюнгуй на северо-восток до левых притоков р. Аргунь. Впервые отложения свиты описаны Г.И. Князевым в 1962 г. Относительно крупные выходы отмечаются в долине р. Уров и в районе с. Георгиевка. Согласно [3], свита разделена на три подсвиты. Нижняя подсвита мощностью 1500 м сложена светло-серыми и белыми доломитами с массивной, реже пятнистой и крустификационной текстурой. В нижней части подсвиты отмечаются прослои кварцевых песчаников, алевролитов, глинистых сланцев и мергелей, а в верхней части подсвиты установлен горизонт интракласта с остатками микрофитолитов Nubecularites catagraphus Reitl., Vermiculites irregularis Reitl., Volvatella vadosa Z. Zhur. и др. [2].

Наиболее полный разрез средней подсвиты общей мощностью 690 м прослеживается в разрезе у с. Георгиевка, где установлено ее согласное залегание на отложениях нижней подсвиты быстринской свиты. В основании средней подсвиты быстринской свиты отмечаются известняки и фитолитовые доломиты с постройками строматолитов в опрокинутом залегании. Фитолитовый комплекс содержит вендские микрофитолиты Vesicularites bothrydioformis (Krasnop.), V. immensis Z. Zhur., V. lobatus Reitl., Vermiculites irregularis Reitl., кембрийские строматолиты Glebulella cembrica Dol., Collumnaefacta usatica Sheng., микрофитолиты Nubecularites catagraphus Reitl., N. alicarius Yak., Osagia senta Z. Zhur. и водоросли Renalcis textularites Titor [2]. В средней части подсвиты присутствуют лилово-серые, дымчато-серые и сиреневатосерые доломиты с прослоями известняков, содержащие комплекс apxeoциат Compositocyathys chuludensis (Jazm.,) Tennericyathus burjaticus (Jazm.), Denaecyathys biporosus Zhur., Morenicyathus macarichus (Osad.) и микрофитолиты Nubecularites parvus Z. Zhur., N. punctatus Reitl., Glomus sp., которые сменяются известняками с тонкими прослоями карбонатных песчаников и кремнисто-глинистых сланцев. Последние содержат трилобиты позднеатдабанского возраста: Sajanaspis modesta Rep., S. crassa Rep., Argunaspis argunica Rep., Hebediscus attleborensis (Shaler et Foerste), Chondragraulos sp. В песчаниках и кремнистых алевролитах выявлены кембрийские моллюски Pelagiella lorenzi Kob., Pojetaia runnegari Jell., Mollopegma krasnovae H.Zheg., Yochelcionella crassa H. Zheg., трубчатая зоопроблематика Hyolites ex gr. insolitus N. Grid., Cambrotubulus sp., Mongolitubulus squamifer Miss., Mongolitubulus sp., брахиоподы Bicia sofia Ushat., Magnicanalis georgievskensis Ushat. и остракоды Bradoria sajutinae Meln., Sunella harva Meln., Indonia uslonensis Meln. B верхней части подсвиты наблюдаются темно-серые до черных известняки и доломиты с трилобитами Redlichina vologdini Lerm., Redlichia knjazevi Rep., Inoyina quadratic Polet., Proerbia quadratica Pokr., Rondocephalus mirandus Pokr. и археоциатами? Baikalocyathus sp., Tumulifungia sp., Carinaecyathidae gen. indet., Erismacoscinus sp. [2].

В бассейне р. Газимур в составе средней подсвиты быстринской свиты отмечено присутствие трилобитов Sajanaspis modesta Rep., Argunaspis argunica Rep., Hebediscus minutes Rep., Redlichia sp. и археоциат Archaeolyntus sibiricus (Toll), A. nalivkini (Vol.), Tumuliolynthus osiptchuki Jazm., Nochoroicyathus pachomovi Bel., Tumulocyathus pustulatus Vol., Syringocnema sp., типичных для атдабанского и ботомского ярусов [2].

Согласно залегают на отложениях средней подсвиты образования верхней подсвиты быстринской свиты. Последняя представлена белыми, реже дымчатыми доломитами, сменяющимися в верхней части серыми тонкослоистыми известняками общей мощностью 620 м [2]. Также в составе подсвиты отмечаются прослои терригенных пород [10]. В известняках обнаружены опрокинутые постройки строматолитов *Collumnaefacta usatica* Schenf., *Glebulella cembrica* Dol., микрофитолиты *Osagia columnata* var. *baicalica* Yak., *O. columnata* var. *ovsianica* Yak., *O. aff. grandis* Z. Zhur, *O. delicate* Yak., *Vesicularites lobatus* Reitl., *Nubecularites punctatus* Reitl. и водоросли *Renalcis* sp. [2].

Рис. 1. Положение исследуемого объекта в структуре восточной части Центрально-Азиатского складчатого пояса (врезка по [4]) и геологическая схема северо-западной части Аргунского континентального массива (по [3], с изменениями авторов) (*a*) и фотография обнажения осадочных пород верхней подсвиты быстринской свиты в бассейне р. Уров (б).

а: 1 – кайнозойские рыхлые отложения; 2 – нижнемеловые осадочные и вулканогенно-осадочные породы; 3 – раннемеловые вулканические породы; 4 – юрские осадочные и вулканогенно-осадочные породы; 5 – мезозойские гранитоиды; 6 – пермские и пермско-раннетриасовые граниты, гранодиориты, монцодиориты и граносиениты; 7 – раннепермские габбро, габбродиориты и диориты; 8, 9 – нижнепалеозойские осадочные породы аргунской серии: 8 – ерниченской толщи, 9 – быстринской свиты; 10 – условно вендские метаосадочные породы белётуйской свиты быркинской серии; 11 – раннепротерозойские метаморфические образования; 12 – разломы; 13 – место отбора образца для U-Pb датирования зерен детритового циркона и его номер;

б: места отбора образцов для минералого-геохимических, изотопно-геохимических (Sm-Nd) и изотопных (U-Pb) исследований и их номера.

На врезке: 14 – положение объекта исследований; 15 – континентальные массивы: АР – Аргунский, БЦ – Бурея-Цзямусинский, в том числе террейны: Буреинский (БЦ(Б)), Малохинганский (БЦ(М)), Ханкайский (БЦ(Х)); 16 – палеозойские–раннемезозойские складчатые пояса (ЮМ – Южно-Монгольско-Хинганский, МО – Монголо-Охотский, СЛ – Солонкерский, ВД – Вундурмиао); 17 – позднеюрско-раннемеловые орогенные пояса.

Соотношение пачек внутри свиты дискуссионно, т.к. контакты между ними часто тектонические. В коренных обнажениях взаимоотношения с нижележащей вендской белётуйской свитой не наблюдаются. Контакты с перекрывающей ернической толщей тектонические. Однозначно датированы слои со скелетной фауной средней подсвиты быстринской свиты концом атдабанского-началом ботомского веков [2]. По решению Межведомственного стратиграфического комитета свита в целом отвечает томмотскому-ботомскому векам [3]. В публикации приведены результаты исследований терригенных отложений (алевролитов) верхней подсвиты быстринской свиты. Образцы пород были отобраны в обнажении высотой 1-2 м при протяженности ~15 м через 2-3 м в бассейне р. Уров (51°39'30.5" с.ш., 119°25'05.2" в.д.) (рис. 1, a, б). Кроме алевролитов в обнажении встречаются прослои известняков и доломитов.

МЕТОДИКА АНАЛИТИЧЕСКИХ ИССЛЕДОВАНИЙ

Содержания породообразующих элементов в породах определены рентгенофлуоресцентным методом в Институте геологии и природопользования ДВО РАН (г. Благовещенск) на рентгеновском спектрометре Pioneer 4S. Концентрации микроэлементов определены методом ICP-MS на квадрупольном ICP массспектрометре NexION 300D в ЦКП «Изотопно-геохимических исследований» ИГХ СО РАН (г. Иркутск).

Sm-Nd изотопно-геохимические исследования пород проведены в ЦКП Изотопно-геохимических исследований ИГХ СО РАН (г. Иркутск). Около 100 мг истертого образца разлагалось в смеси кислот HF, HNO_3 и HCLO₄. Перед разложением к образцу добавлялся смешанный изотопный ¹⁴⁹Sm–¹⁵⁰Nd трассер. Сумма редкоземельных элементов выделялась с использованием ионообменной смолы BioRad AGW50-X8 (200–400 меш) по традиционным методикам [26, 29, 31]. Чистые фракции Sm и Nd выделялись из суммы редких земель при помощи ионообменной смолы LN-Spec (100–150 меш) согласно [36].

Измерения изотопного состава Sm и Nd проводились на 9-коллекторном масс-спектрометре с индуктивно связанной плазмой MC-ICP-MS Neptune Plus в статическом режиме. В течение проведения измерений бланк составил 0.1–0.2 нг для Sm и 0.2–0.5 нг для Nd. Погрешности определения отношений ¹⁴³Nd/¹⁴⁴Nd и

¹⁴⁷Sm/¹⁴⁴Nd составили не более 0.003 % и 0.4 %, соответственно. Полученные данные были нормализованы к отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0.7219. Результаты измерений международного изотопного стандарта JNdi-1 (n = 40) составили ¹⁴³Nd/¹⁴⁴Nd = 0.512107 ± 4 при рекомендованном значении ¹⁴³Nd/¹⁴⁴Nd = 0.512115 ± 7 [33]. Для изотопного состава Nd и концентраций Nd и Sm в международных породных стандартах получены следующие значения: 1) BCR-2 (n = 28), ¹⁴³Nd/¹⁴⁴Nd = 0.512630 ± 14; Nd = 28.8 ± 0.1 мкг/г; Sm = 6.52 ± 0.03 мкг/г; 2) AGV-2 (n = 8), ¹⁴³Nd/¹⁴⁴Nd = 0.512769 ± 16; Nd = 30.3 ± 0.1 мкг/г; Sm = 5.42 ± 0.03 мкг/г.

При расчете величин $\varepsilon_{Nd(t)}$ и модельных возрастов $t_{Nd(DM)}$ использованы современные значения однородного хондритового резервуара (CHUR) по [23] и деплетированной мантии (DM) по [19].

Выделение детритовых цирконов произведено в минералогической лаборатории Института геологии и природопользования ДВО РАН с применением тяжелых жидкостей. Непосредственно U-Pb датирование детритовых цирконов выполнено в ЦКП «Геоспектр» Геологического института им. Н.Л. Добрецова СО РАН (г. Улан-Удэ) на одноколлекторном магнитно-секторном масс-спектрометре с индуктивно связанной плазмой Element XR (Termo Scientific), оснащенном устройством лазерной абляции UP-213 (New Wave Research). Детально описание аналитических процедур приведено в публикации [9]. Диаметр лазерного пучка составлял 30 мкм при плотности потока энергии ~4.5 Дж/см². Масс-спектрометром измеряли сигналы следующих изотопов: в режиме счета «Counting» – ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb; в аналоговом режиме – ²³²Th, ²³⁸U. Сигнал ²³⁵U рассчитывали из сигнала ²³⁸U, основываясь на постоянстве современного значения их отношения ($^{238}U/^{235}U = 137.88$). Съемку осуществляли в скоростном режиме электростатического сканирования (E-scan). В течение одного измерения проводили 800 сканирований. В качестве внешнего стандарта измеряли эталонные цирконы 91500 (1065 млн лет [34]), в качестве контрольного образца – эталоны Plešovice (337 млн лет [32]) и GJ-1 (608 млн лет [22]).

Обработку первичных сигналов и расчет изотопных отношений проводили с помощью программы Glitter [20], конвертацию в excel-формат и расчет значений концентраций U, Th и U/Th – с помощью программы Gtail (автор М.Д. Буянтуев, ГИН СО РАН), построение графиков – с помощью excel-макроса Isoplot [25]. Поправку на нерадиогенный свинец не проводили. Относительные погрешности измерения изотопных отношений в контрольных образцах варьировали в пределах: 1.0–3.7 % для ²⁰⁷Pb/²³⁵U и ²⁰⁷Pb/²⁰⁶Pb, 0.7–1.3 % для ²⁰⁶Pb/²³⁸U. При этом значения средневзвешенных конкордантных возрастов цирконов Plešovice и GJ-1, определенных LA-ICP-MS методом (по 12 измерений каждого контрольного эталона), составили 338 \pm 2 и 598 \pm 4 млн лет, соответственно. Для стандартов GJ-1 и Plešovice средневзвешенные значения возраста по отношениям ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U составляют 643 \pm 30, 606 \pm 3, 598 \pm 2.5 млн лет и 350 \pm 40, 338 \pm 2, 350 \pm 18 млн лет, соответственно. Для анализа выбирали зерна циркона без микротрещин и включений.

Для построения кривой относительной вероятности возраста зерен детритового циркона использовали конкордантные оценки возрастов. Пики для кривой относительной вероятности возрастов зерен циркона рассчитаны с помощью программы AgePick [17].

РЕЗУЛЬТАТЫ МИНЕРАЛОГО-ГЕОХИМИЧЕСКИХ И SM-ND ИЗОТОПНО-ГЕОХИМИЧЕСКИХ ИССЛЕДОВАНИЙ

Алевролиты верхней подсвиты быстринской свиты темно-серого цвета с алевритовой структурой и массивной текстурой. Обломочный материал алевролитов характеризуется слабой степенью окатанности и представлен кварцем, глинистыми минералами, реже встречаются полевые шпаты. В виде единичных обломков наблюдаются карбонатные и вулканические породы, а также слюдистые и слюдисто-кварцевые сланцы. В алевролитах отмечается значительное (до 25 %) количество углеродистого вещества. Цемент базальный серицит-кварцевого состава. Среди акцессорных минералов выявлены циркон, гранат, рудные минералы и гидроксиды железа.

По содержанию основных породообразующих компонентов, лежащих в основе диаграммы $log(SiO_2/Al_2O_3) - log(Fe_2O_3/K_2O)$ [21], алевролиты верхней подсвиты быстринской свиты соответствуют сланцам (рис. 2, *a*). На диаграмме $log(SiO_2/Al_2O_3) - log(Na_2O/K_2O)$ [5] алевролиты по составу близки осадочным породам аркозового состава (рис. 2, *б*). На классификационной диаграмме (Fe_2O_3 + FeO + MgO + MnO + TiO_2) - SiO_2 - (Al_2O_3 + CaO + Na_2O + K_2O) [1] алевролиты соответствуют полимиктовым отложениям (рис. 2, *в*).

В алевролитах подсвиты содержания редкоземельных элементов варьируют от 152 до 184 мкг/г при умеренно дифференцированных спектрах лантаноидов ([La/Yb]n = 5.05–6.02) и четко проявленной отрицательной европиевой аномалии (Eu/Eu* = 0.56– 0.60) (рис. 3, *a*, табл. 1).

При нормировании на верхнюю континентальную кору в изученных алевролитах отмечаются сходные с коровыми содержания большинства элементов-примесей при незначительном обогащении Со (9–24 мкг/г), V

Рис. 2. Диаграммы $log(SiO_2/Al_2O_3) - log(Fe_2O_3/K_2O)$ [21] (*a*), $log(SiO_2/Al_2O3) - log(Na_2O/K_2O)$ [5] (*b*), (Fe_2O_3 + FeO + MgO + MnO + TiO_2) - SiO_2 - Al_2O_3 + CaO + Na_2O + K_2O [1] (*b*) для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива.

Поля песчаников на рис. 2, *в*: I – кварцевых, II – олигомиктовых, III – полимиктовых, IV – вулканокластитовых.

 $\mathsf{Fe_2O_3} + \mathsf{FeO} + \mathsf{MgO} + \mathsf{MnO} + \mathsf{TiO_2}, \ \mathsf{mac.} \ \% \quad \mathsf{Al_2O_3} + \mathsf{CaO} + \mathsf{Na_2O} + \mathsf{K_2O}, \ \mathsf{mac.} \ \%$

(145–151 мкг/г), Ni (51–68 мкг/г) и Cr (120–135 мкг/г) (рис. 3, б, табл. 1). Подобные содержания Co (20 мкг/г) и V (140 мкг/г) характерны для палеозойских андезитов, а концентрации Ni (70 мкг/г) и Cr (147 мкг/г) типичны для палеозойских базальтов [13].

Для реконструкции источников сноса одним из эффективных методов является анализ соотношений микроэлементов, содержания которых существенно не изменяются при выветривании, переносе, седиментации и диагенезе, вследствие чего они несут в себе информацию о составе исходных (материнских) пород. В алевролитах верхней подсвиты быстринской свиты значения соотношений Zr/Sc и Th/Sc составляют 10.00–14.14 и 0.72–0.83, соответственно, что характерно, согласно [28], для петрогенных осадочных пород (first cycle rocks) (рис. 4, *a*). Такие породы по составу наиболее близки к исходным магматическим породам и сформировались в результате одного цикла, начиная с процесса выветривания до непосредственно седиментации.

На преимущественно кислый состав исходных пород указывает положение точек состава исследуемых алевролитов на диаграмме La/Sc – Th/Co [14] (рис. 4, δ). Положение фигуративных точек состава алевролитов верхней подсвиты быстринской свиты на диаграммах Rb – K [16] и Th – La – Sc [14] свидетельствует о присутствии в области сноса образований кислого и среднего состава (рис. 4, *в*, *г*). Для реконструкции источников сноса подсвиты было проведено сравнение геохимического состава алевроли-

Рис. 3. График распределения лантаноидов (а) и спайдер-диаграмма (б) для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива.

Состав хондрита по [27]. Состав верхней континентальной коры по [8].

тов с составом «эталонов», а именно, фанерозойских гранитов, палеозойских андезитов и базальтов, предложенных [13]. Изученные алевролиты по значениям соотношений Th/Sc (0.72–0.83), La/Sc (1.24–1.57), La/Co (1.27–2.93), Th/Cr (0.12–0.13), Cr/Zr (0.46–0.53) близки к среднему составу палеозойских андезитов (рис. 5, a–d), а по величине V/Ni (2.24–2.90) – к фанерозойским гранитам (рис. 5, e).

Алевролиты верхней подсвиты быстринской свиты характеризуются высокими содержаниями Fe₂O₃* + MgO (4.86–11.54 мас. %) и TiO₂ (0.99– 1.13 мас. %) при повышенных величинах $Al_2O_3/$ SiO₂ (0.29–0.31). Подобные вариации породообразующих компонентов, согласно [11], типичны для осадочных пород, сформированных в бассейнах, сопряженных с континентальной, либо океанической островной дугой (рис. 6). В свою очередь, на диаграммах Co–Th–Zr/10, Sc–Th–Zr/10, Th–La–Sc [12] фигуративные точки состава рассматриваемых алевролитов локализуются в поле пород континентальной островной дуги (рис. 7).

Алевролиты верхней подсвиты быстринской свиты характеризуются отрицательными величинами $\varepsilon_{Nd(0)} = -13.4...-13.0$ и $\varepsilon_{Nd(t)} = -7.7...-6.9$ при палеопротерозойских значениях Nd-модельного возраста ($t_{Nd(DM)} = 1.8-1.6$ млрд лет) (рис. 8, табл. 2).

РЕЗУЛЬТАТЫ U-PB ДАТИРОВАНИЯ ЗЕРЕН ДЕТРИТОВОГО ЦИРКОНА

Из алевролита верхней подсвиты быстринской свиты (обр. Ю-130) выделено 120 зерен детритового циркона. Для 48 из них получены конкордантные оценки возраста. Доминирующая часть зерен характеризуется неопротерозойским возрастом (967–772 млн лет) с пиками на кривой относительной вероятности возрастов зерен циркона 963, 885 и 787 млн лет

Рис. 4. Диаграммы (*a*) Zr/Sc–Th/Sc [28], (*б*) La/Sc–Th/Co [14], (*в*) Rb–K [16], (г) Th–La–Sc [14] для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива.

(рис. 9, табл. 3). Кроме того, присутствуют два зерна циркона с конкордантными значениями возраста 1328 и 1388 млн лет. Для 15 зерен циркона получены палеопротерозойские оценки возраста (2396–1624 млн лет) с пиками на кривой относительной вероятности возрастов зерен циркона 1898, 1850 и 1733 млн лет. Наиболее молодые конкордантные зерна детритового циркона характеризуются эдиакарским возрастом (556 ± 9 и 566 ± 10 млн лет).

обсуждение

Прежде всего, рассмотрим результаты геохимических исследований. Аркозовый состав алевролитов верхней подсвиты быстринской свиты, а также особенности распределения микроэлементов свидетельствуют о том, что они являются породами первого цикла, накопление которых происходило за счет размыва пород преимущественно кислого состава при участии образований среднего и основного составов. По своим геохимическим особенностям исследуемые алевролиты близки осадочным породам, сформированным в обстановке континентальной или океанической островной дуги. Эти данные в совокупности со слабой степенью окатанности обломочного материала и присутствием в составе изученных алевролитов обломков вулканических пород позволяют нам предполагать, что накопление терригенных пород быстринской свиты происходило в период тектонической и магматической активности в регионе.

Согласно результатам Sm-Nd изотопно-геохимических исследований терригенные отложения верхней подсвиты быстринской свиты характеризуются оценками $t_{Nd(DM)} = 1.8 - 1.6$ млрд лет. Это свидетельствует о том, что основными поставщиками исходного мате-

Таблица 1. Содержания основных петрогенных компонентов и микроэлементов в алевролитах верхней подсвиты быстринской свиты Аргунского массива.

Образцы/ Компо- ненты	HO-130	IO-130-1	HO-130-2	Ю-130-3	HO-130-4
SiO ₂	65.12	64.21	61.75	58.28	62.00
TiO ₂	1.13	1.10	0.99	1.01	1.05
Al_2O_3	18.92	19.40	18.27	17.87	17.96
$Fe_2O_3^*$	4.22	4.06	8.20	10.74	7.83
MnO	0.05	0.01	0.02	0.03	0.01
MgO	0.83	0.80	0.74	0.80	0.76
CaO	0.01	0.02	0.11	0.05	0.01
Na_2O	0.23	0.23	0.40	0.22	0.22
K ₂ O	4.87	5.11	4.79	4.79	4.66
P_2O_5	0.10	0.09	0.12	0.13	0.14
п.п.п.	4.14	4.17	4.72	5.24	4.58
Сумма	99.62	99.20	100.11	99.16	99.22
Rb	151	148	150	153	142
Sr	320	308	293	300	230
Ba	506	463	404	398	410
La	30.13	26.88	31.85	31.53	25.58
Ce	72.26	64.94	74.08	74.46	61.54
Pr	9.34	8.38	9.31	9.21	7.85
Nd	36.74	32.64	35.67	35.91	30.14
Sm	7.27	6.45	6.69	6.88	5.80
Eu	1.32	1.16	1.21	1.33	1.03
Gd	6.54	5.64	5.94	6.55	5.17
Tb	1.07	0.91	0.90	1.05	0.85
Dy	6.73	5.87	5.94	6.82	5.44
Но	1.35	1.19	1.19	1.38	1.10
Er	4.15	3.54	3.61	4.00	3.34
Tm	0.59	0.54	0.54	0.60	0.51
Yb	4.05	3.60	3.59	3.93	3.37
Lu	0.61	0.54	0.57	0.60	0.51
Y	27	22	25	28	22
Th	16.53	15.67	15.90	15.98	14.97
U	2.83	3.21	3.42	3.56	3.31
Zr	280	253	219	205	229
Hf	8.32	8.20	7.51	7.18	7.68
Nb	27	26	24	23	24
Та	1.94	1.88	1.77	1.74	1.75
Zn	130	88	112	92	66
Со	24	15	15	21	9
Ni	68	51	55	59	52
Sc	20	21	22	20	21
V	151	148	146	145	146
Cr	135	131	130	131	120
Pb	9	17	52	44	32

Примечание. Оксиды приведены в мас. %, микроэлементы – в мкг/г. $Fe_2O_3^*$ – общее железо в форме Fe_2O_3 .

риала послужили палеопротерозойские образования и/или более молодые изверженные породы, исходные расплавы которых сформировались за счет переработки континентальной коры палеопротерозойского возраста.

На диаграмме возраст – $\varepsilon_{Nd(t)}$ линии эволюции Nd-изотопного состава алевролитов верхней подсвиты быстринской свиты близки линиям Nd-состава осадочных пород быркинской и даурской серий (рис. 8, *a*). Кроме того, для них характерны подобные значения величины Nd-модельного возраста. Так в отложениях дырбылкейской свиты даурской серии значения $t_{Nd(DM)} = 1.8-1.6$ млрд лет, а в отложениях кличкинской и белётуйской свит быркинской серии – $t_{Nd(DM)} = 1.9-1.6$ млрд лет (рис. 8, δ). Это позволяет предполагать, что при накоплении терригенных отложений быстринской свиты аргунской серии, а также осадочных пород быркинской и даурской серий Аргунского массива принимали участие единые источники сноса кластического материала.

Далее рассмотрим результаты U-Pb датирования зерен детритового циркона. Наиболее молодые цирконы (2 зерна), выявленные в алевролитах быстринской свиты, характеризуются эдиакарским возрастом. В связи с их присутствием достаточно условно можно сделать вывод о том, что нижняя возрастная граница накопления терригенной части верхней подсвиты быстринской свиты приходится на середину эдиакария. Данный вывод не противоречит принятому на геологических картах возрасту свиты [3, 10].

Согласно U-Pb изотопным исследованиям выявлено, что доминирующая часть детритовых цирконов в терригенных отложениях верхней подсвиты быстринской свиты имеет неопротерозойский возраст. Источниками неопротерозойских цирконов, по всей видимости, являлись массивы гранитов и гранодиоритов, выявленные на территории Китая в пределах Аргунского массива [35]. Кроме того, поставщиками неопротерозойских цирконов можно рассматривать неопротерозойские гранитогнейсы массива Ухусишань (Wuhuxishan) Аргунского массива, которые характеризуются $t_{Nd(DM)} = 1.8-1.6$ млрд лет при $\varepsilon_{Nd(0)} = -14.0...-8.7$ [24], а также тонийские гранодиориты и граниты комплекса Синхуадукоу (Xinghuadukou), Hf-модельный возраст цирконов в которых составляет $t_{HfDM0} = 1.8-1.0$ млрд лет [15].

Помимо неопротерозойских цирконов в алевролитах быстринской свиты присутствует значительное количество цирконов палеопротерозойского возраста, поставщиками которых, по-видимому, являются выявленные недавно палеопротерозойские массивы гранитогнейсов комплекса Синхуадукоу (Xinghuadukou)

Рис. 5. Диаграммы вариаций отношений микроэлементов (*a*) Th/Sc, (δ) La/Sc, (ϵ) La/Co, (ϵ) Th/Cr, (∂) Cr/Zr, (e) V/Ni в алевролитах верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива и в геохимических «эталонах» (фанерозойских гранитах, палеозойских базальтах и андезитах по данным [13]).

Рис. 6. Диаграммы (*a*) (Fe₂O₃ + MgO)–Al₂O₃/SiO₂, (*б*) (Fe₂O₃ + MgO)–TiO₂ [11] для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива.

Поля, характеризующие обстановки, в которых происходило накопление осадочных пород: А – океаническая островная дуга, В – континентальная островная дуга, С – активная континентальная окраина, D – пассивная континентальная окраина.

Рис. 7. Диаграммы (*a*) Co–Th–Zr/10, (*б*) Sc–Th–Zr/10, (*в*) Th–La–Sc [12] для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива.

Поля, характеризующие обстановки, в которых происходило накопление осадочных пород: А – океаническая островная дуга, В – континентальная островная дуга, С – активная континентальная окраина, D – пассивная континентальная окраина.

Рис. 8. Диаграмма (*a*) возраст – ε Nd(t) для алевролитов верхней подсвиты быстринской свиты аргунской серии Аргунского континентального массива в сравнении с докембрийскими осадочными породами даурской и быркинской серий Аргунского массива, неопротерозойскими магматическими образованиями Аргунского массива и (*б*) стратиграфическая колонка со значениями Nd-модельного возраста ($t_{Nd(DM)}$) для нижнепалеозойских и докембрийских осадочных пород северо-западной части Аргунского массива.

Условные обозначения на рис. 8, *a*: 1–3 – линии Nd-изотопного состава осадочных пород Аргунского массива: *l* – быстринской свиты аргунской серии, *2* – быркинской серии [7], *3* – даурской серии [6]; *4* – поле Nd-изотопного состава неопротерозойских гранитогнейсов массива Ухусишань (Wuhuxishan) [24].

Таблица 2. Результаты Sm-Nd изотопно-геохимических исследований алевролитов верхней подсвиты быстринской свиты Аргунского континентального массива.

№ образца	Порода	Nd, мкг/г	Sm, мкг/г	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	+/-2σ изм.	ε _{Nd(0)}	€ _{Nd(t)}	t _{Nd(DM)} , млн лет
Ю-130	алевролит	36.74	7.27	0.11073	0.51195	7	-13.4	-7.7	1773
Ю-130-1	алевролит	32.64	6.45	0.10534	0.511973	24	-13.0	-6.9	1653

Примечание. Величины є_{м(t)} пород рассчитаны на возраст 525 млн лет.

Аргунского массива, в цирконах которых значения Hf-модельного возраста составляют 2.5–1.2 млрд лет [15]. Вопрос об источниках цирконов мезопротерозойского возраста остается открытым, так как в структуре Аргунского массива с помощью геохронологических методов исследований до сих пор не выявлены мезопротерозойские образования.

выводы

Полученные в рамках данных исследований результаты позволяют сделать следующие выводы:

1. Нижняя возрастная граница накопления терригенных отложений верхней подсвиты быстринской свиты, согласно возрасту наиболее молодых зерен детритового циркона, приходится на середину эдиакария.

2. Геохимические особенности алевролитов верхней подсвиты быстринской свиты в совокупности со слабой окатанностью обломочного материала и наличием среди обломков вулканических пород свидетельствуют о накоплении их в обстановке, связанной с субдукционными процессами в период магматической и тектонической активности.

 Микроэлементный состав алевролитов верхней подсвиты быстринской свиты позволяет предполагать, что они являются отложениями первого цикла, в накоплении которых принимали участие различные по кремнекислотности исходные породы.

Рис. 9. Кривая относительной вероятности возрастов зерен детритового циркона (a) и диаграммы с конкордией для конкордантных протерозойских зерен циркона (δ) и неопротерозойских зерен циркона (6) из алевролита верхней подсвиты быстринской свиты аргунского сонтинентального массива.

Таблица 3. U–Pb (LA-ICP-MS) данные для зерен детритового циркона из алевролита верхней подсвиты быстринской свиты (обр. Ю-130) аргунской серии Аргунского континентального массива.

	* *	21	* *	* *			* *		* *			* *		* *					* *				* *					* *	
	D	20	2.0	-6.4	-3.3	ı	-5.2	ī	0.9	-5.1	ı	6.6	ŀ	-0.1	ı	ı	ı	-5.2	-2.7	ī	1		2.7	-8.6	ī	-3.5	4.3	-8.5	ı
	$\pm 2\sigma$	19	18	11			13		13			11		18					22		0		25					12	
	CA	18	1847	793	Discordant	Discordant	933	Discordant	967	Discordant	Discordant	LLL	Discordant	1911	Discordant	Discordant	Discordant	Discordant	1979	Discordant	132	Discordant	1328	Discordant	Discordant	Discordant	Discordant	773	Discordant
eT	$+1\sigma$	17	13	9	16	6	٢	7	٢	13	10	9	9	13	S	9	4	10	14	9	1	22	13	Ξ	6	12	15	9	13
L HILM	³⁸ U -	16	866	789	357	338	927	006	696	796	478	781	741	911	578	767	194	446	956	792	132	701	332	629	328	718	236	770	899
раст,	1σ ²⁽	5	9 1	2	0	8	2	2	2	0	8		×	9	Ξ	×	9	8	1	2	7	l 6	1	8	8	8	0	6	9
Bo_3	+ /9 D	4	48	2	99	78	÷	8	9	40	89	8	5	11	6.	1	28	LT LT	82	78	6	73	18	96	41	45	88	8	86
	$\sigma \begin{vmatrix} 207 \\ 235 \end{vmatrix}$	1	18.	80	23	14	7 94	1 95	96	t 18,	15	76	90	19	67	79	23.	14	19	10	t 13	+ 34	7 13	16	17.	17	22	5 78	20
	+	13) 22	29	22	7 22	27	1 27	26	24	23	31	28	22	45	32	21	1 23	25	23	4	24	47	22	21) 22	7 22	36	21
	²⁰⁶ Pb ²⁰⁷ Pb	12	1830	843	2436	1687	978	1094	960	1893	1742	733	1332	1913	1032	861	2449	1524	2011	1721	260	4753	1297	1782	2283	1780	2337	842	2279
	Rho	11	0.74	0.65	0.74	0.78	0.67	0.66	0.70	0.70	0.74	0.61	0.64	0.75	0.42	0.59	0.76	0.74	0.68	0.73	0.46	0.89	0.46	0.76	0.77	0.76	0.74	0.53	0.76
	<u>+</u> 1α	10	0.0026	0.0010	0.0036	0.0018	0.0012	0.0012	0.0012	0.0026	0.0020	0.0010	0.0010	0.0027	0.0009	0.0010	0.0032	0.0019	0.0030	0.0010	0.0002	0.0044	0.0025	0.0022	0.0018	0.0023	0.0033	0.0011	0.0026
ВИН	²⁰⁶ Pb/ ²³⁸ U	6	0.3357	0.1302	0.4414	0.2307	0.1546	0.1499	0.1622	0.3214	0.2577	0.1288	0.1219	0.3451	0.0938	0.1263	0.4054	0.2514	0.3546	0.1303	0.0207	0.3020	0.2294	0.2874	0.2287	0.3054	0.4147	0.1270	0.3427
отношен	<u>+</u> 1α	8	0.0541	0.0145	0.1067	0.0319	0.0176	0.0185	0.0176	0.0599	0.0396	0.0146	0.0180	0.0581	0.0218	0.0160	0.0907	0.0341	0.0750	0.0201	0.0026	0.4867	0.0619	0.0439	0.0453	0.0458	0.0918	0.0186	0.06910
Изотопные	²⁰⁷ Pb/ ²³⁵ U	7	5.1708	1.2041	9.6170	3.2871	1.5270	1.5680	1.5880	5.1265	3.7827	1.1307	1.4388	5.5665	0.9509	1.1787	8.8977	3.2823	6.0430	1.8915	0.1463	29.5733	2.6601	4.3137	4.5535	4.5789	8.5225	1.1737	6.80618
	<u>+</u> 1α	9	0.0014	0.0009	0.0020	0.0012	0.0010	0.0010	0.0009	0.0016	0.0013	0.0009	0.0012	0.0015	0.0018	0.0010	0.0020	0.0019	0.0018	0.0013	0.0010	0.0121	0.0021	0.0013	0.0017	0.0013	0.0019	0.0012	0.0018
	²⁰⁶ Pb/ ²⁰⁷ Pb	5	8.9466	14.8997	6.3263	9.6718	13.9564	13.1773	14.0777	8.6398	9.3885	15.7037	11.6734	8.5452	13.5886	14.7711	6.2793	10.5551	8.0861	9.4966	19.4609	1.4072	11.8865	9.1837	6.9225	9.1921	6.7056	14.9087	6.9385
/11	Th	4	1.2	1.8	1.5	1.0	3.4	3.8	1.7	1.0	4.6	6.8	0.6	0.9	0.4	3.0	0.8	0.5	0.7	8.2	1.2	2.4	0.9	4.6	1.9	2.3	1.0	1.9	0.9
11	U, MKL/F	3	244	423	72	927	456	406	568	139	392	408	360	285	90	302	250	598	115	786	1233	14	35	1132	1604	1182	219	187	877
٩L	AKT/F	2	211	236	47	938	136	106	329	136	85	67	598	317	230	100	328	1268	156	96	1023	9	40	246	839	505	222	100	945
	Анализы	1	HO-130/001	HO-130/003	HO-130/006	HO-130/007	HO-130/008	HO-130/009	HO-130/010	HO-130/011	HO-130/012	HO-130/013	HO-130/014	HO-130/015	HO-130/016	HO-130/017	HO-130/019	HO-130/021	HO-130/022	HO-130/023	HO-130/024	HO-130/025	HO-130/026	HO-130/027	HO-130/028	HO-130/029	HO-130/030	HO-130/031	HO-130/032

51	1		* *	* *	* *	* *		* *			* *	* *			* *			* *	* *			* *	* *	* *	* *						* *	
20	, 1		0.5	1.0	-7.6	-2.1	ī	-0.3	ī	ı	-1.6	-2.1	·	·	-3.6	ŀ	-6.1	-5.2	-3.1	·	ı	-0.1	-7.0	-6.8	-7.2	1	•	•	1	-9.3	-1.0	·
10	2		19	6	13	19		15			14	12			21			13	12	З		6	13	11	11						22	
18	Discordant	Discordant	1725	556	894	2013	Discordant	896	Discordant	Discordant	882	828	Discordant	Discordant	1624	Discordant	Discordant	873	LLL	127	Discordant	566	772	787	775	Discordant	Discordant	Discordant	Discordant	Discordant	2396	Discordant
17	2	9	12	4	٢	14	9	×	×	S	٢	9	×	18	12	٢	17	٢	9	0	10	S	9	9	9	٢	19	13	7	14	16	9
16	808	810	1729	556	890	1992	804	896	1164	552	881	827	1111	1790	1609	772	1767	870	776	127	1312	566	770	784	751	868	541	1054	868	2085	2384	584
15	10	6	10	9	6	10	٢	11	8	6	10	٢	6	14	11	11	17	8	٢	٢	6	8	10	٢	9	10	40	18	10	11	11	12
14	878	884	1724	555	911	2013	994	896	1237	621	885	831	1500	3316	1634	837	1819	882	782	133	1381	565	784	798	765	1036	1995	2330	1070	2193	2396	794
13	37	33	25	36	33	23	26	42	26	42	37	29	23	23	28	40	37	30	31	126	26	43	41	30	28	33	75	33	31	24	23	44
12	1060	1078	1721	551	963	2035	1442	899	1369	881	896	844	2104	4437	1669	1014	1882	917	801	245	1490	566	827	841	808	1410	4265	3770	1511	2298	2409	1443
11	0.52	0.56	0.69	0.55	0.57	0.72	0.68	0.48	0.67	0.47	0.52	0.64	0.70	0.79	0.63	0.48	0.55	0.63	0.60	0.22	0.66	0.48	0.49	0.63	0.66	0.55	0.79	0.69	0.57	0.66	0.67	0.46
10	0.0012	0.0011	0.0025	0.0007	0.0012	0.0029	0.0010	0.0014	0.0016	0.0008	0.0013	0.0011	0.0015	0.0037	0.0024	0.0012	0.0034	0.0012	0.0010	0.0002	0.0018	0.0008	0.0011	0.0010	0.0010	0.0013	0.0032	0.0024	0.0012	0.0031	0.0036	0.0010
0	0.1336	0.1338	0.3076	0.0901	0.1480	0.3622	0.1329	0.1492	0.1978	0.0894	0.1465	0.1369	0.1881	0.3201	0.2834	0.1272	0.3153	0.1444	0.1279	0.0199	0.2258	0.0918	0.1269	0.1292	0.1235	0.1442	0.0876	0.1776	0.1441	0.3819	0.4475	0.0948
×	0.0233	0.0208	0.0522	0.0109	0.0212	0.0689	0.0194	0.0270	0.0283	0.0162	0.0229	0.0159	0.0377	0.3640	0.0536	0.0241	0.0982	0.0177	0.0156	0.0078	0.0349	0.0138	0.0215	0.0152	0.0135	0.0286	0.2805	0.1771	0.0285	0.0939	0.1156	0.0260
7	1.3740	1.3892	4.4640	0.7266	1.4516	6.2580	1.6615	1.4179	2.3807	0.8428	1.3902	1.2671	3.3798	25.1904	3.9982	1.2796	4.9978	1.3844	1.1592	0.1402	2.8950	0.7452	1.1648	1.1943	1.1235	1.7731	6.1315	8.9190	1.8689	7.6703	9.5915	1.1858
9	0.0014	0.0012	0.0014	0.0010	0.0012	0.0016	0.0012	0.0014	0.0012	0.0014	0.0012	0.0010	0.0017	0.0092	0.0015	0.0015	0.0024	0.0010	0.0010	0.0029	0.0013	0.0012	0.0013	0.0010	0.0009	0.0016	0.0265	0.0080	0.0016	0.0020	0.0021	0.0021
Ś	13.3984	13.2775	9.4979	17.0895	14.0548	7.9758	11.0212	14.5002	11.4506	14.6277	14.5229	14.8892	7.6702	1.7513	9.7699	13.7052	8.6939	14.3767	15.2043	19.5872	10.7481	16.9681	15.0106	14.9138	15.1468	11.2068	1.9692	2.7435	10.6285	6.8614	6.4294	11.0161
4	1.6	1.0	1.7	3.1	0.9	3.9	2.4	1.6	2.1	0.5	1.8	1.8	1.0	0.6	1.0	1.6	1.3	1.5	1.7	43.9	3.9	1.7	1.1	2.9	0.1	1.0	0.2	0.9	1.2	3.1	4.1	1.9
۲	236	269	234	420	216	347	737	117	489	193	179	659	960	37	164	143	25	650	578	179	570	368	172	1049	1437	191	٢	31	231	892	708	108
¢	143	262	135	135	249	89	304	74	235	394	100	375	998	99	166	92	19	444	343	4	147	219	156	366	1123	202	32	35	199	291	171	56
-	HO-130/033	HO-130/035	HO-130/036	HO-130/037	HO-130/038	HO-130/039	HO-130/042	HO-130/043	HO-130/044	HO-130/045	HO-130/046	HO-130/047	HO-130/048	HO-130/050	HO-130/051	HO-130/052	HO-130/053	HO-130/054	HO-130/056	HO-130/057	HO-130/058	HO-130/059	HO-130/061	HO-130/062	HO-130/063 6	HO-130/064	HO-130/065	HO-130/066	HO-130/067	HO-130/068	HO-130/069	HO-130/070

Таблица 3. (Продолжение).

Продолжение).
3. (
Таблица

21	* *	* *	* *				* *		* *		* *		* *	* *	* *	* *				* *			* *				* *		* *	* *		* *
20	0.6-	4.1	-3.2	· ·		-8.5	-3.2	I	3.9	1	-2.9	1	-8.0	1.8	5.4	-0.4	ı	ı	ı	-3.5	ı	ı	9.9	ı	ı	ı	7.7	1 (-6.7	-0.3	4.5	6.5
19	14	23	23		14	13	27		12	4	13		13	13	15	13		10		15			13				15	14	21	27		16
18	801	1735	1735	Discordant	787	795	1848	Discordant	810	199	804	Discordant	804	790	889	863	Discordant	548	Discordant	965	Discordant	Discordant	782	Discordant	Discordant	Discordant	933	790	1388	1746	Discordant	887
17	7	14	13	12	٢	9	16	S	9	0	٢	15	٢	9	×	٢	2	S	14	×	14	S	9	10	13	٢	×	٢	11	15	17	8
16	66L	1754	1721	957	784	793	1834	594	812	199	803	2079	801	791	891	863	801	545	1938	962	1971	566	785	1082	1700	878	938	788	1375	1746	2233	890
15	11	13	12	24	13	10	15	8	8	4	10	12	10	6	11	6	11	10	13	10	13	11	6	16	13	11	11	11	13	15	14	12
14	819	1722	1746	1061	820	812	1861	920	803	211	809	2221	819	787	877	863	1002	562	2113	972	2269	678	766	1410	1853	949	918	812	1413	1747	2287	874
13	44	31	30	72	49	38	33	27	34	54	41	25	39	38	42	35	35	54	27	35	26	45	38	39	30	36	39	42	34	36	28	46
12	878	1685	1778	1283	921	867	1894	1817	781	344	827	2356	871	LLL	845	866	1477	628	2290	797	2552	1073	714	1949	2033	1118	871	881	1473	1751	2337	836
11	0.46	0.58	0.59	0.37	0.43	0.52	0.56	0.62	0.56	0.40	0.49	0.63	0.50	0.52	0.48	0.55	0.53	0.41	0.60	0.55	0.60	0.45	0.52	0.50	0.57	0.52	0.51	0.48	0.54	0.53	0.58	0.46
10	0.0012	0.0028	0.0027	0.0022	0.0013	0.0012	0.0032	0.0008	0.0011	0.0003	0.0012	0.0031	0.0012	0.0011	0.0014	0.0012	0.0012	0.0009	0.0030	0.0014	0.0031	0.0009	0.0011	0.0019	0.0027	0.0013	0.0014	0.0012	0.0022	0.0030	0.0037	0.0014
6	0.1319	0.3127	0.3060	0.1600	0.1294	0.1308	0.3290	0.0965	0.1343	0.0314	0.1327	0.3807	0.1324	0.1305	0.1482	0.1432	0.1323	0.0885	0.3507	0.1610	0.3576	0.0918	0.1295	0.1828	0.3017	0.1460	0.1566	0.1299	0.2377	0.3110	0.4139	0.1480
8	0.0252	0.0693	0.0689	0.0676	0.0286	0.0207	0.0913	0.0194	0.0180	0.0053	0.0225	0.1030	0.0220	0.0197	0.0266	0.0209	0.0289	0.0178	0.1002	0.0255	0.1182	0.0204	0.0189	0.0623	0.0813	0.0265	0.0262	0.0234	0.0502	0.0848	0.1317	0.0288
7	1.2411	4.4511	4.5798	1.8422	1.2425	1.2240	5.2526	1.4752	1.2060	0.2307	1.2184	7.9088	1.2411	1.1698	1.3725	1.3394	1.6841	0.7400	7.0119	1.6049	8.3438	0.9497	1.1272	3.0095	5.2050	1.5456	1.4686	1.2241	3.0201	4.5882	8.5072	1.3638
6	0.0015	0.0018	0.0018	0.0031	0.0017	0.0012	0.0022	0.0016	0.0011	0.0013	0.0013	0.0022	0.0013	0.0012	0.0014	0.0012	0.0017	0.0015	0.0023	0.0012	0.0026	0.0017	0.0011	0.0026	0.0021	0.0014	0.0013	0.0014	0.0016	0.0021	0.0025	0.0015
5	14.6508	9.6830	9.2070	11.9722	14.3480	14.7308	8.6334	9.0122	15.3442	18.7564	15.0132	6.6335	14.6976	15.3753	14.8821	14.7342	10.8232	16.4879	6.8932	13.8233	5.9059	13.3149	15.8389	8.3736	7.9876	13.0188	14.6979	14.6292	10.8468	9.3411	6.7052	14.9539
4	2.4	1.2	1.6	5.3	1.2	1.9	1.3	2.3	1.1	2.8	1.6	1.9	2.5	9.3	1.7	1.8	1.0	0.6	1.0	3.0	3.1	0.4	1.9	1.0	1.4	7.1	1.6	2.1	2.1	1.7	1.6	2.5
3	174	107	120	20	108	267	111	1844	596	333	216	737	353	373	237	442	364	130	214	397	434	183	419	119	254	342	252	454	259	109	224	147
2	74	92	78	4	88	140	87	805	526	118	132	386	142	40	138	240	352	200	216	130	141	419	219	119	183	48	161	219	121	65	145	60
1	HO-130/072	HO-130/073	HO-130/074	HO-130/075	HO-130/076	HO-130/077	HO-130/078	HO-130/079	HO-130/080	HO-130/081	HO-130/082	HO-130/083	HO-130/084	HO-130/085	HO-130/086	HO-130/087	HO-130/088	HO-130/089	HO-130/090	HO-130/091	HO-130/093	HO-130/094	HO-130/095	HO-130/096	HO-130/097	HO-130/099	HO-130/100	HO-130/101	HO-130/103	HO-130/104	HO-130/105	HO-130/106

	20 21	ı	0.2 **	·1.6 **	ı	((5.8 **	ı	2.5 **	3.5 **	4.6 **	I	3.2 **	
ŀ	19		13	26 .		14		14		26	30	27		14	
	18	Discordant	787	1874	Discordant	793	Discordant	791	Discordant	1828	2380	1896	Discordant	806	
	17	52	2	15	9	2	15	٢	4	15	19	16	7	2	
	16	1769	788	1867	768	790	1659	789	258	1818	2413	1920	852	807	
	15	37	10	14	10	11	16	11	19	15	16	15	11	10	
	14	3449	786	1880	811	814	3151	801	1099	1839	2368	1878	889	800	
	13	48	41	32	38	41	26	44	47	33	31	34	38	40	
	12	4654	786	1897	935	881	4317	838	3692	1864	2332	1835	984	782	
	11	0.89	0.49	0.55	0.52	0.49	0.62	0.47	0.61	0.54	0.56	0.53	0.51	0.51	
	10	0.0107	0.0012	0.0031	0.0011	0.0012	0.0030	0.0012	0.0007	0.0030	0.0043	0.0033	0.0013	0.0012	
	6	0.3157	0.1300	0.3358	0.1265	0.1304	0.2935	0.1302	0.0409	0.3258	0.4541	0.3468	0.1413	0.1334	
	8	1.0996	0.0217	0.0887	0.0212	0.0231	0.3564	0.0246	0.0542	0.0886	0.1586	0.0949	0.0252	0.0216	
	7	28.8581	1.1698	5.3704	1.2235	1.2284	21.2766	1.2017	1.9521	5.1151	9.3003	5.3578	1.3991	1.1988	
	9	0.0226	0.0013	0.0021	0.0013	0.0014	0.0095	0.0014	0.0108	0.0021	0.0027	0.0021	0.0014	0.0012	
	5	1.5077	15.3113	8.6186	14.2519	14.6281	1.9013	14.9353	2.8876	8.7795	6.7287	8.9217	13.9173	15.3394	
	4	1.6	1.9	1.4	2.6	1.9	1.4	7.7	0.2	1.6	1.4	1.9	1.0	2.3	
ŀ	ω	26	313	168	481	483	204	322	47	155	249	193	453	487	
ŀ	0	16	167	119	189	254	151	42	245	66	172	100	459	208	
	1	HO-130/107	HO-130/108	tO-130/109	tO-130/110	HO-130/111	HO-130/112	tO-130/113	HO-130/114	EO-130/115	t0-130/116	t0-130/117	HO-130/118	HO-130/119	

4. Основными поставщиками материнского материала для терригенных отложений быстринской свиты, согласно U-Pb датированию зерен детритового циркона и Sm-Nd изотопно-геохимическим исследованиям, являлись нео- и палеопротерозойские магматические породы Аргунского массива, образование которых связано с переработкой палеопротерозойской континентальной коры.

Благодарности. Авторы благодарят сотрудников ЦКП «Амурский центр минералого-геохимических исследований» ИГиП ДВО РАН (Е.Н. Воропаеву, О.Г. Медведеву, В.И. Рождествину, А.С. Сегренёва, Е.С. Сапожник, Е.В. Ушакову), ЦКП «Изотопно-геохимических исследований» ИГХ СО РАН (О.В. Зарубину, Н.В. Брянского, Т.Н. Галкину), а также персонал ЦКП «Геоспектр» ГИН СО РАН (г. Улан-Удэ) за проведение аналитических исследований.

Исследования выполнены в рамках фундаментальных исследований ИГиП ДВО РАН (№ 122041800127-8 «Геодинамические обстановки, основные этапы тектонической эволюции и металлогения восточной части Центрально-Азиатского складчатого пояса»).

СПИСОК ЛИТЕРАТУРЫ

- Коссовская А.Г., Тучкова М.И. К проблеме минералогопетрохимической классификации и генезиса песчаных пород // Литология и полезн. ископаемые. 1988. № 2. С. 8–24.
- Куриленко А.В., Котляр Г.В., Кульков Н.П., Раитина Н.И., Ядрищенская Н.Г., Старухина Л.П., Маркович Е.М., Окунева Т.М., Дольник Т.А., Попеко Л.И., Беляева Г.В., Бяков А.С., Башурова Н.Ф., Тимохин А.В., Коровников И.В., Могучева Н.К., Изох Н.Г., Анисимова С.А., Клец Т.В., Иванова Р.М., Стукалина Г.А. Атлас фауны и флоры палеозоямезозоя Забайкалья. Новосибирск: Наука, 2002. 714 с.
- Озерский А.Ф., Винниченко Е.Л. Государственная геологическая карта Российской Федерации. 1:200 000. Серия Приаргунская. Лист М-50-VI (Бол. Зерентуй). М.: МФ ВСЕГЕИ, 2015.
- Парфенов Л.М., Берзин Н.А., Ханчук А.И., Бодарч Г., Беличенко В.Г., Булгатов А.Н., Дриль С.И., Кириллова Г.Л., Кузьмин М.И., Ноклеберг У.Дж., Прокопьев А.В., Тимофе-

Габлица 3. (Окончание).

Примечание к таблице 3. Rho – коэффициент корреляции между ошибками отношений ${}^{207}Pb/{}^{235}U-{}^{206}Pb/{}^{238}U$: Rho = ($\sigma({}^{206}Pb/{}^{238}U)/({}^{206}Pb/{}^{238}U))/(\sigma({}^{207}Pb/{}^{235}U))({}^{207}Pb/{}^{235}U))$. где σ – относительная ошибка того или иного отношения [18, 30]; CA – конкордантный возраст [25], D – дискордантность, вычислялась как D = (Boзраст({}^{206}Pb/{}^{238}U)/Boзраст({}^{206}Pb/{}^{207}Pb)\cdot100)-100 %. ** – для построения кривой относительной вероятности цирконов и вычисления её пиков использовались только те значения возрастов, которые характеризуются конкордантным возрастом (CA) при этом в них значения показателя дискордантности составляли не более 10 %, а ошибка значений отношения возрастов ${}^{206}Pb/{}^{238}U$ и ${}^{207}Pb/{}^{235}U$ не более 3 %.

ев В.Ф., Томуртогоо О., Янь Х. Модель формирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеан. геология. 2003. Т. 22, № 6. С. 7–41.

- Петтиджон Ф.Дж., Поттер П., Сивер Р.М. Пески и песчаники. М.: Мир, 1976. 535 с.
- Смирнова Ю.Н., Овчинников Р.О., Смирнов Ю.В., Дриль С.И. Источники кластического материала и условия накопления осадочных пород даурской серии Аргунского континентального массива // Тихоокеан. геология. 2022. Т. 41, № 1. С. 13–31.
- 7. Смирнова Ю.Н., Дриль С.И. Геохимия вендских (?) метаосадочных пород быркинской серии Аргунского супертеррейна // Геохимия. 2022. Т. 67, № 5. С. 445–462.
- 8. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Хубанов В.Б., Буянтуев М.Д., Цыганков А.А. U–Pb изотопное датирование цирконов из PZ₃–MZ магматических комплексов Забайкалья методом магнитно-секторной массспектрометрии с лазерным пробоотбором: процедура определения и сопоставления с SHRIMP данными // Геология и геофизика. 2016. Т. 57, № 1. С. 241–258.
- Шивохин Е.А., Озерский А.Ф., Куриленко А.В., Раитина Н.И., Карасев В.В. Государственная геологическая карта Российской Федерации. Масштаб 1:1 000000. Серия Алдано-Забайкальская. Лист М-50 (Борзя). Третье поколение / Под ред. В.В. Старченко СПб.: ВСЕГЕИ, 2010.
- Bhatia M.R. Plate tectonics and geochemical composition of sandstones // J. Geol. 1983. V. 91, N 6. P. 611–627.
- Bhatia M.R., Crook K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins // Contrib. Miner. Petrol. 1986. V. 92. P. 181–193.
- Condie K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales // Chem. Geol. 1993. V. 104, Is. 1-4. P. 1–37.
- Cullers R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA // Chem. Geol. 2002. V. 191, Is. 4. P. 305–327.
- Feng Z., Zhang Q., Liu Y., Li L., Jiang L., Zhou J., Li W., Ma Y. Reconstruction of Rodinia supercontinent: evidence from the Erguna Block (NE China) and adjacent units in the eastern Central Asian orogenic Belt // Precambrian Res. 2022. V. 368, 106467.
- Floyd P.A., Leveridge B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones // J. Geol. Soc. London. 1987. V. 144, Is. 4. P. 531–542.
- 17. Gehrels G.E. AgePick, Available online: https://sites.google. com/a/laserchron.org/laserchron/home/. 2007.
- Gerdes A., Zeh A. Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany // Earth Planet. Sci. Lett. 2006. V. 249, Is. 1–2. P. 47–61.
- Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth and Planet Sci. Lett. 1988. V. 87, Is. 3. P. 249–265.
- 20. Griffin W.L., Powell W.J., Pearson N.J., O'Reilly S.Y. Glitter: data reduction software for laser ablation ICP-MS // Laser Ab-

lation–ICP-MS in the Earth Sciences. Current practices and outstanding issues. Ed. Sylvester P. Mineralogical Assoc. Canada Short Course Ser. 2008. V. 40. P. 308–314.

- Herron M.M. Geochemical classification of terrigenous sands and shales from core or log data // J. Sediment. Petrol. 1988. V. 58, Is. 5. P. 820–829.
- 22. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol. 2004. V. 211, Is. 1–2. P. 47–69.
- Jacobsen S.B., Wasserburg G.J. Sm-Nd isotopic evolution of chondrites and achondrites, II // Earth and Planet. Sci. Lett. 1984. V. 67, Is. 2. P. 137–150.
- Liu H., Li Y., Wan Z., Lai Ch.-K. Early Neoproterozoic tectonic evolution of the Erguna Terrane (NE China) and its paleogeographic location in Rodinia supercontinent: insights from magmatic and sedimentary record // Gondwana Res. 2020. V. 88. P. 185–200.
- Ludwig K.R. Isoplot 3.6. A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2008. N 4. P. 1–77.
- 26. Makishima A., Nagender B., Nakamura E. New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICP-MS and TIMS // Geochemical J. 2008. V. 42, Is. 3. P. 237–246.
- 27. McDonough W.F., Sun S.S. The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N. Geochemical approaches to sedimentation, provenance, and tectonics // Geol. Soc. Am. Spec. Pap. 1993. V. 284. P. 21–40.
- Pin C., Briot D., Bassin C., Poitrasson F. Concominant separation of strontium and samarium–neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography // Anal. Chim. Acta. 1994. V. 298, Is. 2. P. 209–217.
- Powerman V.I., Buyantuev M.D., Ivanov A.V. A review of detrital zircon data treatment, and launch of a new tool 'Dezirteer' along with the suggested universal workflow // Chem. Geol. 2021. V. 583, 120437.
- Richard P., Shimizu N., Allègre C.J. ¹⁴³Nd/¹⁴⁶Nd A Natural Tracer: An Application to Oceanic Basalts // Earth Plan Sci Lett. 1976. V. 31, Is. 2. P. 269–278.
- 32. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249, Is. 1–2. P. 1–35.
- 33. Tanaka T., Togashi S., Kamioka H., Amakawa H., Kagami H., Hamamoto T., Yuhara M., Orihashi Y., Yoneda S., Shimizu H. JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium // Chem. Geol. 2000. V. 168, Is. 3–4. P. 279–281.
- Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses // Geostandards Newslett. 1995. V. 19, Is. 1. P. 1–23.
- 35. Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M. Geochronology of the Phanerozoic granitoids in northeastern China // J. Asian Earth Sci. 2011. V. 41, Is. 1. P. 1–30.

36. Yang Y.H., Chu Z.Y., Wu F.Y., Xia L.W., Yang J.H. Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS // J. Anal. At. Spectrom. 2011. V. 26. P. 1237–1244.

Рекомендована к печати А.А. Сорокиным после доработки 11.05.2023 г. принята к печати 23.11.2023 г.

Yu.N. Smirnova, A.V. Kurilenko, V.B. Khubanov, S.I. Dril'

Sources of terrigenous sediments of the Lower Cambrian Bystraya Formation of the Argun massif and paleogeodynamic settings of their accumulation

The article presents the results of mineralogical, geochemical, isotopic, and geochemical (Sm-Nd) studies on siltstones from the upper Bystraya subformation of the Argun continental massif, as well as U-Pb dating of detrital zircon grains from them. The main goal of the research was to identify the main sources of clastic material, reconstruct the paleogeodynamic environment of accumulation, and constrain the lower age limit for the formation of terrigenous rocks of the upper Bystraya subformation. The mineralogical composition of the studied rocks indicates their accumulation in an environment associated with subduction processes. The trace element composition of siltstones from the subformation suggests the presence of rocks of mixed composition in the source area in terms of their silica content. Based on Sm-Nd isotopic and geochemical data, it was established that the main sources of clastic material for siltstones of the stratigraphic unit were Paleoproterozoic rocks and (or) younger rocks whose formation is associated with the reworking of the Paleoproterozoic continental crust. Most of the zircons from the studied sample of siltstones of the upper Bystraya subformation are Neo- and Paleoproterozoic in age. Their sources are probably Neo- and Paleoproterozoic igneous rocks widespread within the Argun massif in China. The age of the youngest zircons (556 ± 9 and 566 ± 10 Ma) isolated from siltstones of the upper Bystraya subformation was used to constrain the lower limit of their accumulation in the middle of the Ediacaran.

Key words: Cambrian, sedimentary rocks, geochemistry, Sm-Nd data, U-Pb dating, Argun massif, eastern Transbaikalia.