DOI: 10.30911/0207-4028-2021-40-2-90-97

УДК 550.93: 553.065.4 (571.56+571.65)

ДИСКУССИИ

ВОЗРАСТ ЭПИТЕРМАЛЬНОГО ЗОЛОТО-СЕРЕБРЯНОГО ОРУДЕНЕНИЯ НА МЕСТОРОЖДЕНИИ КУБАКА (ОМОЛОНСКИЙ КРАТОННЫЙ ТЕРРЕЙН, СЕВЕРО-ВОСТОК РОССИИ): ГЕОЛОГИЧЕСКИЕ И ИЗОТОПНО-ГЕОХРОНОЛОГИЧЕСКИЕ (U-PB, 40 AR/39 AR) ОГРАНИЧЕНИЯ

А.А. Сидоров¹, Н.Е. Савва^{2*}, Б.И. Ишков³, А.В. Волков¹, В.А. Степанов⁴, Л.Н. Шишакова⁵

¹ФГБУН Институт геологии рудных месторождений, петрографии, минералогии и геохимии РАН, Старомонетный пер. 35, г. Москва, 119017; e-mail: koluma@igem.ru, tma2105@mail.ru

^{2*}ФГБУН Северо-Восточный комплексный научно-исследовательский институт им. Н.А. Шило ДВО РАН, ул. Портовая 16, г. Магадан, 685000; e-mail: nsavva7803@mail.ru

³OOO «Омолонская золоторудная компания» ОЗРК, ул. Транспортная 1, г. Магадан, 685007; e-mail: ishkov@magadan.polymetal.ru

⁴ФГБУН Научно-исследовательский геотехнологический центр ДВО РАН, Северо-Восточное шоссе 30, г. Петропавловск-Камчатский, 683002; e-mail: <u>vitstepanov@yandex.ru</u>

⁵ФГБОУВО Московский государственный университет им. М.В. Ломоносова, геологический факультет. Ленинские горы, ГСП-1, г. Москва, 119234; e-mail: <u>shishakova@geol.msu.ru</u>

Поступила в редакцию 13 июля 2020 г.

Приводятся геолого-структурные и минералогические факты, описывающие пересечение палеозойских рудных жил с карбоновыми и мезозойскими на золото-серебряном месторождении Кубака в Омолонском кратонном террейне. Совокупность приведенных наблюдений не позволяет на основе изотопно-геологических исследований однозначно ограничить возраст оруденения верхним карбоном, как это сделано В.В. Акининым и др. (2020) на образцах руд и пород, отобранных в единичном обнажении рудного тела в карьере Цокольной зоны.

Ключевые слова: возраст оруденения, золото-серебряное месторождение, Омолонский террейн, Северо-Восток России.

ВВЕДЕНИЕ

Статья В.В. Акинина и др. [1] посвящена крупному эпитермальному Au-Ag месторождению Кубака (Омолонский террейн, Северо-Восток России) — одному из наиболее детально исследованных, но все еще обсуждаемых в плане возраста и генетических особенностей. В своей статье эти авторы использовали изотопные данные U-Pb и ⁴⁰Ar/³⁹Ar датирования до- и пострудных магматических пород и жильного адуляра, отобранных в карьере Цокольной зоны месторождения Кубака в попытке ограничить возраст рудообразования [1]. Их исследования представляют собой вклад в базы данных по определению возраста вмещающих пород и руд месторождения. Однако мы считаем необходимым подчеркнуть некоторые проблемы с их интерпретацией и выводами.

Важные геологические особенности месторождения Кубака были детально задокументированы многочисленными исследователями [2–6, 8–11 и др.], которые позволили обосновать представления о полихронном рудообразовании. Полученные этими исследователями результаты привели к созданию нескольких противоречивых геолого-генетических моделей месторождения, включающих различные источники флюидов и генетические процессы, которые достаточно подробно рассмотрены в статье [2].

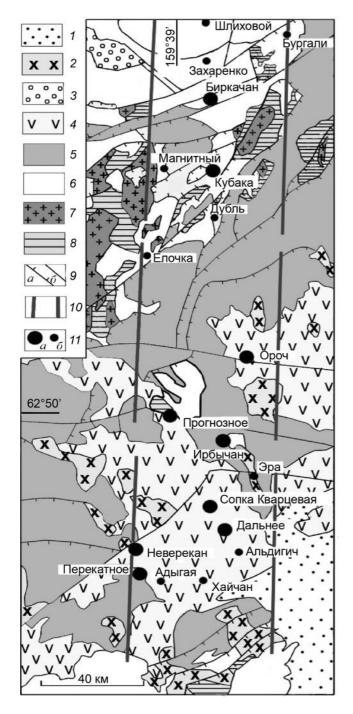
Действительно, сочетание радиометрических определений возраста и региональные геологические события (например, магматизм, деформации, метаморфизм) имеют решающее значение для правильной оценки эволюции рудообразования и для определения

региональных корреляций. В этой статье мы рассмотрим некоторые из геологических и минералогических фактов, показывающие сложность минералообразующей системы (систем) на Кубаке.

Таким образом, мы вновь поднимаем вопрос обоснованности генетических интерпретаций, которые строятся в основном на изотопных данных, а не на обширных и надежных материалах геологических, минералогических и текстурных исследований. Наши основные опасения по поводу значимости предложенной В.В. Акининым и др. [1] одноступенчатой модели заключается в ее несовместимости с ранее полученными фактами, которые документируют многофазную природу оруденения на месторождении.

ИЗОТОПНЫЙ ВОЗРАСТ ОРУДЕНЕНИЯ

Во первых, обращает на себя внимание значительный разрыв (около 70 млн лет) между возрастом рудовмещающих позднедевонских вулканитов кедонской серии (U-Pb возраст по циркону около 370 ± 2.5 млн лет, SHRIMP) и данными $^{40}\text{Ar}/^{39}\text{Ar}$ датирования возраста для белого адуляра продуктивной жилы Цокольной зоны -299 ± 3.5 млн лет [1]. Такая разница противоречит модели образования эпитермальных месторождений, в которой вулканизм и рудообразование близко одновременны. Отметим, что в статье [1] не показано, с каким геологическим событием коррелирует полученный $^{40}\text{Ar}/^{39}\text{Ar}$ (299 \pm 3.5 млн лет) возраст оруденения.


Рассмотрим в качестве примера эпитермальное месторождение Хишикари (Япония) – одно из крупнейших в мире, которое образовалось в течение плейстоцена. К-Аг возраст указывает на то, что вулканическая активность на месторождении продолжалась от 1.78 до 0.51 млн лет назад [12], а минерализация отложилась между 1.25 и 0.66 млн [13, 14]. Данные ⁴⁰Ar/³⁹Ar возраста адуляра показали, что интервалы формирования между отдельными продуктивными жилами варьировали приблизительно от 40 000 до 130 000 лет, а общая продолжительность минерализации в жиле составляла около 250 000 лет [15]. Применив метод актуализма, возраст минерализации месторождения Кубака, как и продуктивных жил месторождения Хишикари, должен соответствовать возрасту вмещающих вулканических пород - 370 ± 2.5 млн лет [1]. Однако продуктивные жилы месторождения Кубака, по данным В.В. Акинина и др. [1], значительно моложе. Подчеркнем, что последние данные по ⁴⁰Ar/³⁹Ar для белого адуляра продуктивной жилы Цокольной зоны -299 ± 3.5 млн лет [1]. Однако этот возраст значительно больше, чем определения ⁴⁰Ar/³⁹Ar, полученные П.У. Лейером и др. [4] в Геофизическом институте Университета штата Аляска из руд месторождения Кубака: проба № 15285/с-1 – микроклин? (адуляр) из рудной жилы каркасно-пластинчатой текстуры (апофиза рудного тела 5, штр.9, шт.4) — возраст 127.58 ± 0.27 ; проба № 15240/к-22 – адуляр из гетерогенных рудных тел 5 и 6 -149.66 ± 0.31 ; проба № 15240/к-11 - адуляр из гетерогенных рудных тел 5 и $6 - 121.76 \pm 0.27$ млн лет. Отметим также, что крупнокристаллический (поздний) адуляр из рудных тел 5 и 6 (коллекция Саввы Н.Е.) был передан И.Н. Котляру для датировки и дал предельно молодой возраст – 95–110 млн лет [3]. Детальный анализ возрастных особенностей минерализации месторождения Кубака приведен в работе И.Н. Котляра и др. [3]. В ней на обширном фактическом материале изотопно-геохронологических исследований констатируется, что возраст руд месторождения составляет $335 \pm 5 - 337 \pm 8$ млн лет, т.е. визейский век раннего карбона, но для крупнокристаллического адуляра он намного меньше. В связи с этим И.Н. Котляром и др. [3] было отмечено, что в позднем палеозое-мезозое руды подвергались неоднократным термальным воздействиям, приведшим к нарушению изотопных систем. Именно с ними связываются относительно более молодые датировки. Время повторного включения изотопных часов по рудным образованиям определяется в широком интервале от 212 до 110 млн лет и вызывает острые дискуссии.

Отмеченные выше противоречивые значения возраста поднимают еще раз вопрос надежности ⁴⁰Ar/³⁹Ar метода датирования и, что еще более важно, значения радиометрических возрастов при определении парагенетически «непозиционных» минералов.

ГЕОЛОГИЧЕСКИЕ ОСОБЕННОСТИ МЕСТОРОЖДЕНИЯ

Месторождение локализуется в Гижиго-Омолонской субмеридиональной зоне тектоно-магматической активизации, где оруденение протягивается широкой полосой через палеозойский Кедонский и мезозойский Охотско-Чукотский вулканические пояса (КВП) и (ОЧВП) (рис. 1). Как видно из схемы, Кубака прстранственно находится в зоне влияния ОЧВП, в его перивулканической зоне, что подтверждается многочисленными наблюдениями.

В течение длительного периода геологи на месторождении Кубака документировали большое количество горных выработок – канав, скважин, штолен, расчисток и карьеров, тщательно исследуя взаимоотношения вмещающих пород с рудными жилами и прожилками. Опираясь на эти наблюдения, ниже мы приводим фактические данные различных авторов.

Геологами документаторами неоднократно фиксировалось, что гидротермалиты использовали участки сочетания тектонических структур как СЗ, так и СВ ориентировки (пример – рудное тело № 10 СВ простирания, описанное В.А. Степановым и Л.Н. Шишаковой (1994).

В керне разведочной скважины 6900-040S (129.2–130.9 м) отчетливо наблюдается, как оперяющие жилу прожилки кварца проникают в подверженные метасоматозу углистые алевролиты корбинской свиты нижнего карбона (C_1 krb) (рис. 2). Жильный материал содержит обломки углисто-глинистых осадков размером 0.1–3.0 см. Эта жила продуктивная, с концентрацией Au от 5.92 до 22.2 г/т.

В керне скважин 5720-055N и 6520-005N задокументировано пересечение поздними жилами базальтовых даек. Причем в жилах отмечены обломки базальтов (рис. 3). Опробование этих интервалов даек демонстрирует повышенную золотоносность (0.36 г/т и 0.28 г/т, соответственно).

Наиболее подробно изучена продуктивная жила Цокольной зоны, которая на контакте с C₁krb представлена гидротермальной брекчией, состоящей из разноразмерных обломков кварц-адуляровых агрегатов (обломков жил раннего этапа, нередко окатанных), сцементированных кварц-халцедоновым материалом с обломками алевролитов (рис. 4) [6, 8]. Следует отметить, что минеральные парагенезисы в жиле Цокольной зоны существенно отличаются от рудных тел Центральной зоны месторождения появлением крупнозернистого пирита (рис. $4, \delta$), арсенопирита, джемсонита, буланжерита, бертьерита, детально в прозрачных шлифах были описаны кварц-каолинитгидрослюдистые метасоматические изменения алевролитов корбинской свиты C_1 krb (рис 4, e- ∂) [6], подобные изменения наблюдаются также и непосредственно в карьере, на горизонте соприкосновения жилы с породами C₁krb (рис. 5).

Таким образом, отмеченные выше факты (дробление и цементация) показывают, что руды месторождения Кубака вполне могли быть сформированы в несколько этапов.

Рис. 1. Распространение оруденения в Гижиго-Омолонской субмеридиональной зоне тектоно-магматической активизации (ТМА), по Б.И. Ишкову.

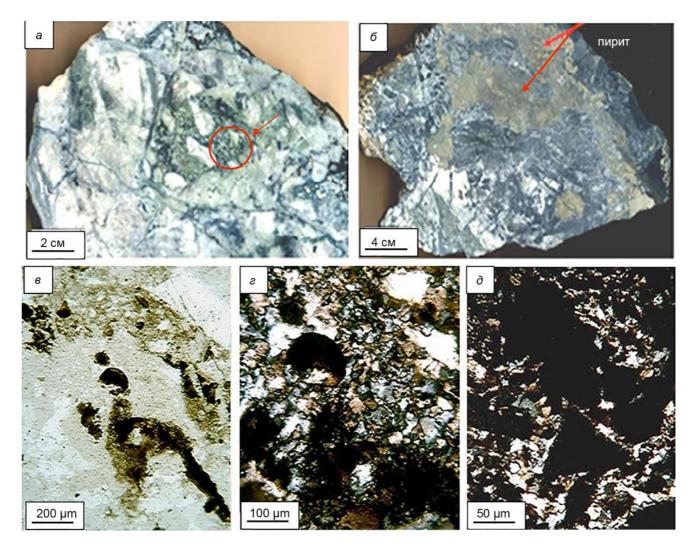

I — континентальные лимнические, аллювиальные и ледниковые формации (N-K₂); 2 — интрузивный комплекс (J_3 -K₂) существенно гранитоидной формации; 3 — орогенный комплекс (K_2 - P): молассовая формация; 4 — орогенный комплекс (J_3 -K_{1,2}): континентальные дифференцированные вулканогенные формации; 5 — субплатформенные (C-J) известняковые, песчано-глинистые, терригенно-карбонатные, граувакковые, флишевые формации; 6 — континетальные (D-C), преимущественно трахиандезит-трахириолитовые вулканические формации орогенного типа; 7 — гранитоидные интрузивные формации докембрийского цоколя (AR-PZ); 8 — комплекс фундамента и его чехла (AR-O): амфиболиты, гнейсы, кристаллические сланцы, карбонатные, Fe-кварцитопесчаниковые, терригенные формации; 9 — региональные разломы: a — надвиги, b — сбросо-сдвиги; b — предполагаемые границы Гижиго-Омолонской зоны ТМА; b — месторождения (a) и рудопроявления (b).

Рис. 2. Керн скважины 6900-040S. Отчетливое проникновение гидротермалитов выполнения в углистые алевролиты корбинской свиты и ксенолиты этих пород в их составе (фото Б.И. Ишкова).

Рис. 3. Фрагмент керна из скважины 5720-55N с пересекающей базальтовую дайку гидротермальной брекчией, содержащей остроугольные обломки базальта (показаны стрелками) (фото В.А. Ярового.)

Рис. 4. Образцы из жилы Цокольной зоны, отобранные на контакте с C_1 krb $(a-\delta)$; обломки углистого алевролита в цементирующем их кварце, прозрачные шлифы $(s-\delta)$, участок изготовления прозрачных препаратов обведен кружком на фрагменте образца (a).

ПОЗДНИЙ, ОБОГАЩЕННЫЙ СЕРЕБРОМ ЭПИТЕРМАЛЬНЫЙ ЭТАП

Рассматривая минералогические особенности руд, можно допустить их полихронное формирование. В пользу такого предположения говорят следующие факты: наличие серии жил (шт. №1. рассечки 21–39; шт. № 4, штрек 9, рудные тела 5 и 6), сложенных кварц-адуляр-халцедоновым агрегатом с преобладанием серебро-селенидного парагенезиса; в рудах из этих жил содержание Se превышало 0.1 %, золото-серебряное отношение в них 1:10–1:100. Кроме того, для этой минерализации характерно повышенное количество пирита и халькопирита в метасоматитах, а также парагенезис низкопробного самородного золота (кюстелита) с тонкоигольчатым арсенопиритом. Здесь развит белый крупнокристаллический адуляр поздней генерации (до 15 мм по диагонали),

существенно отличающийся от розового мелкозернистого адуляра раннего этапа в Центральной рудной зоне (рис. 6).

Возраст этого белого адуляра, как уже отмечалось выше, по K-Ar – 95–110 млн лет. Мы связываем с этим возрастом не только включение изотопных часов, но и причину их вызвавшую – образование жил серебро-селенидного парагенезиса предположительно ранне-позднемелового возраста, следовавшее за тектонической активностью в зоне влияния ОЧВП, известного в металлогеническом плане как сереброносная металлогеническая провинция [7].

Полиэтапное формирование руд месторождения Кубака отражается и в контрастном полимодальном распределении пробности самородного золота на гистограмме, где выделяется два пика 200–300 и 600–650 ‰ [6].

Рис. 5. Фотография жилы Цокольной зоны, вид на юго-восток. Кроме метасоматоза на снимке видно, что слои корбинской свиты C_1 krb в зоне контакта меняют углы падения от близко к горизонтальным на удалении от контакта до относительно крутых непосредственно в контакте. Южный борт карьера Цокольной зоны (фото Б.И. Ишкова).

ЗНАЧЕНИЕ ПОЗДНЕЮРСКО-РАННЕМЕЛОВОГО ОРОГЕНЕЗА И ВЕРХНЕМЕЛОВОЙ ТЕКТОНО-МАГМАТИЧЕСКОЙ АКТИВИЗАЦИИ

В позднеюрский период на площади района складчатые структуры терригенно-карбонатного верхоянского (С-Ј) комплекса были надвинуты (шарьированы) на структуры предшествующего кедонского (D-С1). Для этой части КВП характерны линейные и изоклинальные складки преимущественно северо-восточного простирания. Широко развиты надвиги, в подошвах которых часто обнажаются мелкие и крупные фрагменты пород метаморфизованного комплекса (Аr-О) фундамента Омолонского террейна. Интрузивы палеозойского возраста (D-C₁), как и вмещающие их вулканиты, подвержены деформациям и региональному метаморфизму. Кроме того, гранитоидные интрузивы середины мезозоя (Ј₂-K₁) локализованы либо в ядрах крупных линейных антиклиналей, либо вдоль плоскостей крупных надвигов. Большинство из них незначительно вскрыты эрозией, либо, по данным геофизики, они залегают вблизи поверхности. Интрузивы, можно сказать, «вложены» в структуры, образованные в это время. Они очень ярко выражены в метасоматических и геохимических Си-Мо и Аи-Ад ореолах [11]. Рудные поля месторождений Кубака, Биркачан и Бургали локализованы в автохтонных плитах перед фронтом надвигов позднеюрского времени, экранирующая роль которых усилена вовлечением в подошву углисто-глинистых сланцев нижнего карбона.

В пределах рудных полей преобладают сдвиговые деформации складок, что выражено в образовании кулисообразных изгибов осевых плоскостей складок вплоть до приобретения их короткими фрагментами ориентировки поперек главного (северо-восточного) направления складчатости. Эти оси, особенно синклиналей II порядка, фиксируют линейные (северо-западного простирания) узкие полосы (желобы – словно «вдавленные» в вулканиты) углисто-глинистых пород, туфогравелитов и агломератовых туфов, обычно подстилающих вулканиты в разрезе. Вдоль осей складок генерального северо-восточного направления формировались крупные взбросы и сбросы, ограничившие область рудообразования, например, разлом Аномальный на месторождении Кубака. По таким разломам в рудообразующую систему могли поступать метеорные воды, что могло способствовать смешению метеорных и магаматических флюидов в сопрягающихся с ними трещинах отрыва - своеобразных структурных ловушках на пути движения рудообразующих растворов. В этот период могла сформироваться часть эпитермальных руд месторождения Кубака, что также подтверждает изотопное датирование [3, 4]

Минерализация позднего эпитермального этапа месторождения Кубака может быть связана с позднемеловой тектоно-магматической активизаций, сопровождавшей становление ОЧВП, вулканические толщи которого перекрывают юг Омолонского кратонного террейна в непосредственной близости от Авландинского (Кубакинского) рудного района. В пользу этого

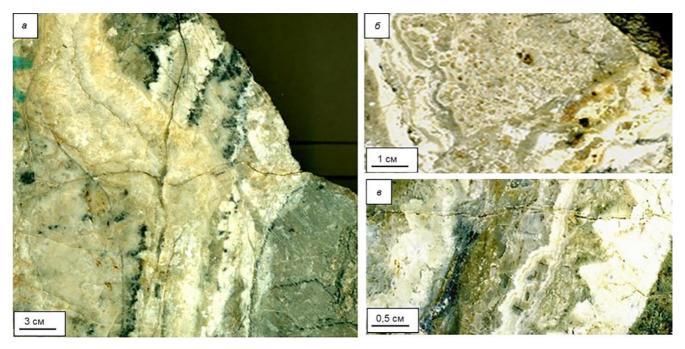


Рис. 6. Различные генерации адуляра из руд месторождения Кубака.

a — фрагмент жилы с адуляром второй генерации и с селенидной минерализацией (черное), пересеченной кварц-карбонатным прожилком; δ — мелко-среднезернистый адуляр ранней генерации из руд с существенно золотым парагенезисом; ϵ — крупнокристаллический адуляр второй генерации из позднего серебро-селенидного парагенезиса (шт. №1, рудное тело 5, рассечка 25).

предположения свидетельствуют следующие факты: эпитермальные месторождения развиты как в Туромчинском районе ОЧВП, так и в соседнем Авландинском районе палеозойского КВП. Месторождения обоих районов вытянуты цепочкой вдоль субмеридиональной зоны скрытого глубинного разлома (рис. 1). В структуре кубакинского рудного поля выделяется позднемезозойский магматический очаг, который фиксируется субвулканическими штоками, силлами и дайками риолитов, риодацитов и дациандезитов, а также телами эксплозивных и эруптивных брекчий. В непосредственной близости от месторождения Кубака на поверхности обнажается субвулкан Бокал (100 млн лет [3]).

ЗАКЛЮЧЕНИЕ

В заключение следует отметить, что статья В.В. Акинина и др. [1] – это полезный вклад в существующую геологическую базу данных по эволюции Au-Ag минерализации на месторождении Кубака. Однако вышеизложенный материал показывает дискуссионность предложенной этими авторами одноступенчатой генетической модели месторождения. Установленные геологические и минералогические особенности такого достаточно крупного Au-Ag месторождения, как Кубака, требуют от модели его образования участия и синхронности взаимодействия

между различными тектоническими, структурными, геохимическими процессами. Поэтому на основании имеющейся базы данных эпитермальная Au-Ag минерализация месторождения Кубака могла сформироваться в результате телескопической последовательности различных этапов гидротермальной деятельности.

Работа выполнена в рамках темы Госзадания ИГЕМ РАН «Металлогения рудных районов вулканоплутоногенных и складчатых орогенных поясов Северо-Востока России». Авторы благодарны руководству и геологам ОЗРК и Магаданского филиала ПАО «Полиметалл» за помощь в проведении исследований.

СПИСОК ЛИТЕРАТУРЫ

- Акинин В.В., Глухов А.Н., Ползуненков Г.О., Альшевский А.В., Алексеев Д.И. Возраст эпитермального золото-серебряного оруденения на месторождении Кубака (Омолонский кратонный террейн, Северо-Восток России, геологические и изотопно-геохронологические (U-Pb, ⁴⁰Ar/³⁹Ar) ограничения // Тихоокеан. геология. 2020. Т. 39, № 1. С. 37–47.
- 2. Волков А.В., Ишков Б.И., Савва Н.Е., Алексеев В.Ю., Сидоров А.А. О роли надвигов в модели формирования эпитермальных Аи-Аg месторож-дений Кедонского палеозойского вулканического пояса (Северо-Восток России) // Докл. АН. 2014. Т. 457, № 6. С. 682–686.
- 3. Котляр И.Н., Жуланова И.Л., Русакова Т.Б., Гагиева А.М. Изотопные системы магматических и метаморфических

- комплексов Северо-Востока России. Магадан: СВКНИИ ДВО РАН, 2001. 319 с.
- 4. Лейер П.У., Иванов В.В., Раткин В.В., Бандтцен Т.К. Эпитермальное золото-серебряное месторождение Северо-Востока России: первые ⁴⁰Ar/³⁹Ar-определения возраста руд // Докл. АН. 1997. Т. 356, № 5. С. 665–658.
- Савва Н.Е., Волков А.В., Сидоров А.А. Особенности рудообразования на эпитермальном Au-Ag месторождении Кубака (Северо-Восток России) // Докл. АН. 2007. Т. 47, № 1. С. 79–83.
- Савва Н.Е. Минералогия серебра Северо-Востока России / науч. ред. А.А.Сидоров. М.: Издательство Триумф, 2018. 544 с.
- Сидоров А.А., Белый В.Ф., Волков А.В., Савва Н.Е., Алексеев В.Ю., Колова Е.Е. Золото-сереброносный Охотско-Чукотский вулканогенный пояс // Геология рудн. месторождений. 2009. Т. 51, № 6. С. 512–527.
- 8. Степанов В.А., Шишакова Л.Н. Кубакинское золото-серебряное месторождение. Владивосток: Дальнаука, 1994. 198 с.
- 9. Степанов В.А., Шергина Ю.П., Шкоробогатова Г.С., Шишакова Л.Н., Рублев А.Г. Возраст руд Кубакинского месторождения золота (Омолонский массив) // Тихоокеан. геология. 1998. Т. 17, № 5. С. 89–97.
- 10. Стружков С.Ф., Константинов М.М. Металлогения золота и серебра Охотско-Чукотского вулканогенного пояса. М.: Научный мир, 2005. 318 с.

- 11. Стружков С.Ф., Аристов В.В., Данильченко В.А. Наталенко М.В., Обушков А.В. Открытие месторождений золота Тихоокеанского рудного пояса (1959–2008 гг.). М.: Научный мир, 2008. 215 с.
- Izava E., Urashima Y., Ibaraki K., et al. The Hishikari gold deposits: high-grade epithermal veins in Quaternary volcanic of southern Kyushu, Japan//Epithermal gold mineralization of the Circum-Pacific. Elsevier, 1990. P. 1–56.
- Izawa E., Kurihara M., Itaya T. Ar ages and the initial Ar isotopic ratio of adularia-quartz veins from the Hishikari gold deposit, Japan // Resource Geology. 1993. Special Issue 14. P. 63–69.
- 14. Sanematsu K., Watanabe K., Duncan R., Izawa E. Duration of mineralizationand timing of vein at the Hishikari epithermal gold deposit, southern Kyushu, Japan, determined by ⁴⁰Ar/³⁹Ar dating // Proceedings 25"NZ Geothermal Workshop. 2003. P. 45–48.
- 15. Sekine R., Izawa E., Watanabe K. Timing of fracture formation of mineralization at the Hishikari deposit, southern Kyushu, Japan // Resource Geology. 2002. Vol. 52. P. 395–404.

Рекомендована к печати А.И. Ханчуком после доработки 23.10.2020 г. принята к публикации 2.12.2020 г.

A.A. Sidorov, N.E. Savva, B.I. Ishkov, A.V. Volkov, V.A. Stepanov, L.N. Shishakova

Age of epithermal gold-silver mineralization at the Kubaka deposit (Omolon craton terrain, northeast of Russia): geological and isotope-geochronological (U-Pb, ⁴⁰Ar / ³⁹Ar) limitations

Geological, structural and mineralogical facts describing the intersection of Paleozoic ore veins with carbon and Mezozoic veins in the Kubaka gold-silver deposit in the Omolon craton terrane are presented. The totality of the above observations does not allow limitation of the age mineralization by Upper Carboniferous based on isotope-geological studies, as V.V.Akinin et al. (2020) did on ore and rock samples selected in one geological exposure of ore body in opencast mine of the Tsokolny zone.

Key words: age of mineralization, gold-silver deposit, Omolon craton, Northeast of Russia.