DOI: 10.30911/0207-4028-2020-39-4-53-76

УДК 553.32:549.76 (265.54)

МИНЕРАЛЫ В МАРГАНЦЕВЫХ ОБРАЗОВАНИЯХ ВУЛКАНА БЕЛЯЕВСКОГО (ЯПОНСКОЕ МОРЕ)

Ю.Г. Волохин, П.Е. Михайлик, Е.В. Михайлик

ФГБУН Дальневосточный геологический институт ДВО РАН, пр-т 100 лет Владивостоку 159, г. Владивосток, 690022; e-mail: <u>yvolokhin@mail.ru</u>

Поступила в редакцию 16 сентября 2019 г.

Изучен минеральный состав марганцевых корок вулкана Беляевского в Центральной котловине Японского моря, представляющих большое разнообразие текстур и имеющих сложный полиминеральный состав. Помимо ранее известных тодорокита, бёрнессита, манганита, пиролюзита и вернадита, в корках впервые установлены родохрозит, манганозит, квенселит, гетеролит, манганотанталит, тунгомелан. Группа акцессорных минералов дополнена магнетитом, титаномагнетитом, гематитом, титаногематитом, пиритом, пирротином, галенитом, монацитом, церианитом, бадделеитом. В брекчиевых Мп-корках впервые установлено медистое золото. Ведущим фактором образования марганцевых минералов предполагаются низкотемпературные гидротермы, обусловившие поступление металлов и определявшие локальные условий кристаллизации марганцевых минералов (манганита, тодорокита, бёрнессита) и некоторых минералов-акцессориев (интерметаллидов, сульфидов, самородных элементов) могло быть сапропелевое органическое вещество кремнисто-глинистых углеродистых слоев, присутствующих в кайнозойских отложениях глубоководной котловины.

Ключевые слова: железомарганцевые корки, марганцевые минералы, редкоземельные элементы, благородные металлы, вулкан Беляевского, Японское море.

введение

Изучение железомарганцевых образований (ЖМО) дальневосточных окраинных морей дает возможность получения материала для сравнения с марганцевыми рудами, распространенными на циркум-тихоокеанском континентальном обрамлении, и с океаническими ЖМО, рассматриваемыми как перспективные руды на Cu, Ni, Co и редкоземельные элементы.

Японское море представляет собой рифтогенный окраинно-континентальный бассейн, формирование которого началось с раскрытия глубоководных котловин: Центральной котловины в позднем олигоцене (32–25 млн лет) и котловины Хонсю (бассейн Ямато) на рубеже раннего и среднего миоцена (18–15 млн лет) [53, 57]. Особенностью геологического строения моря является наличие молодых вулканических построек с проявленной гидротермальной марганцевой минерализацией. Последняя представлена преимущественно Fe-Mn корками на субстрате, сложенном базальтами, туфами и диатомитами, а также и оксигидроксидами Mn, заполняющими трещины и поры в базальтах и образующими цемент туфов и вулканокластических брекчий [24, 28, 32, 37].

Железомарганцевые корки (толщиной 0.5–4 см, до 15–20 см) приурочены к верхним участкам склонов подводных вулканов и склонам тектонических поднятий на обширной акватории Японского моря (рис. 1). Первые заключения об их гидротермальном происхождении базировались на геологическом положении, петрографических парагенезисах и особенностях минерального и химического состава корок: присутствию тодорокита, контрастному разделению Fe и Mn (в среднем, около 50 % Mn, и 0.5 % Fe) и низкими содержаниями Cu, Ni и Co, обычно не превышающими 150 г/т) [32, 37].

Вулкан Беляевского представляет интерес как место обнаружения молодых, позднекайнозойских Fe-Mn корок в центре самой глубоководной (до 3740 м) Центральной котловины моря, характеризующейся, по геофизическим данным, гетерогенным фундаментом и корой океанического и субокеанического типа [27]. Совмещенное с электронной микродифракци-

Рис. 1. Распространение железомарганцевых корок на подводных вулканах и возвышенностях Японского моря (*a*) и положение станций драгирования вулкана Беляевского (*б*), по [2, 4, 21].

ей, рентгено-дифрактометрическое изучение одного образца Fe-Mn корки с вулкана Беляевского показало закономерное изменение ее состава от чисто бёрнесситового в нижней ее части к бёрнессит-тодорокитовому в середине и верхней части корки [37]. В то же время отмечен и более сложный характер распределения бёрнессита и тодорокита, частое срастание бёрнессита с тодорокитом и присутствие вернадита (δ-MnO₂), связываемого со вторичным окислением первых двух минералов [37]. Дальнейшие минералогические исследования расширили спектр слагающих корки марганцевых минералов, дополнив его клинобёрнесситом, 14А-м Са-бёрнесситом и безжелезистым вернадитом [13]. В корках вулканов Японского моря установлено присутствие манганита и пиролюзита [6, 65, 66], минералов, распространенных в марганцевых рудах осадочного происхождения и низкотемпературных жильных рудах.

Последующими исследователями основной упор сделан на поиски акцессорных минералов цветных и благородных металлов, имеющих важное экономическое значение, с использованием современных методов микроанализа. Микрозондовым изучением аншлифов базальтов и одной железомарганцевой корки с вулкана (возвышенности) Беляевского обнаружен близкий комплекс акцессорных металлов, включающий благородные (Ag), редкие (Cu, Zn, Sn, Ni, Pb, As) и редкоземельные (La, Ce, Nd, Pr) элементы, находящиеся в форме оксидов, сульфидов, фосфидов, интерметаллических соединений или в самородном виде [4]. В железомарганцевых корках вулкана Галагана, кроме Cu, Zn, Pb, Sn, Ni, W, Mo, Bi, As и Ag, были также определены Pd и Pt [5].

Происхождение металлов в корках связывается с поступлением их с постмагматическими высокотемпературными газо-гидротермальными флюидами [3–5]. Следует отметить, что в этих работах характеристика главного компонента корок – породообразующих марганцевых минералов – страдает неполнотой. Например, в изучении корок и базальтов вулкана Беляевского [4] лишь один анализ (табл. 2, участок 1) характеризует состав марганцевого минерала – оксигидроксида.

Геохимические данные, в т.ч. картина распределения редкоземельных элементов и иттрия (REY) [23, 40], широко используются при генетических построениях, для выяснения источников металлов, установления возраста и механизма образования корок. Многими авторами марганцевые минералы (7Å и 10Å манганаты) рассматриваются как поглотители и накопители Ni, Cu, Co и редкоземельных элементов [41, 50, 62, 67]. Распределение РЗЭ и иттрия (REY) в валовых пробах и в главных минеральных фазах Mnкорок вулкана Беляевского показало смешанную гидротермально-гидрогенную природу вещества корок [22, 23], а наличие гидрогенной компоненты отмечается даже в островодужных ЖМО, выходящих на поверхности дна [55]. Интерпретация геохимических данных также требует знания минерального состава ЖМО и характера взаимоотношения породообразующих и рудных минералов-акцессориев.

В данной работе представлены новые результаты изучения минерального состава в дополнительно изученных образцах марганцевых корок вулкана Беляевского, рассмотрены источники вещества, возможные причины и факторы образования контрастной ассоциации рудных минералов в марганцевых корках.

МЕТОДЫ ИЗУЧЕНИЯ

Исследованы образцы, полученные в 36-м (19.04-29.07. 1980 г.) рейсе НИС «Первенец», которые были любезно предоставлены сотрудниками ТОИ ДВО РАН. Минеральный состав марганцевых руд изучался с применением оптической и сканирующей микроскопии, рентгено-диффрактометрического и микрозондового анализов, выполненных в центре коллективного пользования ДВГИ ДВО РАН. Съемки порошковых препаратов образцов проводились на рентгеновских дифрактометрах ДРОН-III и Mini-FLEX-II, с Си-Ка излучением. Химический состав минералов изучался в аншлифах на микроанализаторе JXA8100 с тремя волновыми спектрометрами (JEOL Ltd., Япония) и энергодисперсионным спектрометром INCAx-sight (OXFORD Instruments, Англия). Напыление образцов углеродное, но в некоторых случаях использовалось напыление золотом. Так как образцы Мп-корок, обладающие грубослоистым строением и высокой пористостью, являются механически непрочными, выпиленные препараты (1.5×1.0 см) запаивались в эпоксидную смолу и полировались на алмазной пасте. Полученные при микроанализе химические составы минералов даются в весовых, атомных процентах и в рассчитанных формульных выражениях. В различных публикациях формулы одних и тех же марганцевых минералов-оксидов представлены различным (иногда противоречивым) образом [1, 7, 14, 18–20, 26, 31, 36, 39, 42, 43, 47–49, 51, 59, 60, 68, 69, 71].

В данной статье, в соответствии с представлениями [36, 43], к вернадиту мы относим плохо упорядоченный минерал состава MnO₂·nH₂O, характеризующийся отражениями d/n = -2.4 и -1.4 Å на дифрактограммах и содержащий марганец в высшей степени окисления (Mn⁴⁺). Бёрнессит и тодорокит характеризуются присутствием на дифрактограммах пиков в области 7.0-7.2 Å и 3.5-3.6 Å (бёрнессит), в области 9.5-9.8 Å (тодорокит) и, кроме преобладающего Mn⁴⁺, обычно содержат Mn³⁺ или Mn²⁺ [36]. Формулы бёрнессита рассчитывались для Мп-оксидов, у которых в группе межслоевых катионов преобладает Na, исходя из содержания 14 атомов кислорода в формульном выражении. Имеющий близкие с бёрнесситом параметры элементарной ячейки рансьеит представляется как кальций-содержащий оксигидроксид марганца, с 9 атомами кислорода. На формулу тодорокита (на 12 атомов кислорода) рассчитывались гидроксиды марганца, имеющие умеренные содержания щелочных металлов и высокие – Ва, отмечаемого в составе этого минерала [1, 14, 20, 26].

В кайнозойских ЖМО Японского моря (как и океана) содержание Mn³⁺ обычно незначительно [58]. Поэтому в формулах минералов, рассчитанных со сбалансированным зарядом катионов и анионов, принято его нахождение в двух- и четырехвалентном состоянии (табл. 1). При расчете состава минералов исключены фоновые значения Cl, S и связанных с ними количеств Na и Mg, представляющие соли морской поровой воды, осадившиеся при высыхании образцов и сохранившиеся в мелкопористых участках корок в виде галита, эпсомита, отмечавшихся на дифрактограммах осадков Японского моря [25]. Формулы рудных минералов-акцессориев, по возможности, также рассчитывались с исключением элементов вмещающей матрицы породы.

Низкие суммы весовых содержаний химических элементов многих марганцевых минералов-оксигидроксидов (от 71 до 88 % вес.) преимущественно связаны с потерей межслоевой молекулярной воды в вакууме электронного микроскопа или микрозонда [43]. Так как вода может входить в посторонние соли (например, эпсомит), образующиеся при высыхании тонкопористых образцов, оценки содержания молекулярной воды в марганцевых минералах могут оказаться завышенными (табл. 1 и 2).

УСЛОВИЯ ЗАЛЕГАНИЯ И ВОЗРАСТ КОРОК

Вулкан Беляевского представляет двухвершинную базальтовую постройку, вытянутую в меридиональном направлении и возвышающуюся над ложем Центральной котловины на 1000-1330 м (рис. 1). Установленный калий-аргоновым методом возраст вулканических пород составляет 12.0 ± 1 и 4.4 ± 0.3 млн лет (средний миоцен-плиоцен) [15, 16, 33]. Для вулканических пород вулкана Беляевского характерна мелкая пористость. Объем пор достигает 40 %, что свидетельствует о высокой флюидонасыщенности исходной магмы [27, 30]. Плоские и остроугольные обломки Mn-корок подняты с глубины 2500 – 2200 м, с вершинной части вулкана Беляевского, где они залегали на твердом субстрате, представленном миндалекаменными лавами, туфами и вулканокластическими брекчиями. Они содержат от 22 до 51 % Мп и менее 1 % Fe [4]. Для Мп-корок станции 2069 характерно крупнослоистое и брекчиевое строение [23, 65, 66]. Их толщина варьирует от 1 до 8 см, достигая в максимальном сечении 12 см [4, 32]. В корках присутствуют тонкие линзы известковистого материала с фораминиферами позднеплейстоценового возраста, что позволяет считать их возраст плейстоценовым или позднеплиоцен-плейстоценовым [32].

СТРОЕНИЕ И ОБЩИЙ МИНЕРАЛЬНЫЙ СОСТАВ КОРОК

Микротекстуры и микроструктуры корок. Электронно-микроскопические изображения свидетельствуют о сложном строении и многообразии микротекстур и микроструктур марганцевых корок (рис. 2), а микроаналитические данные – о значительном различии слагающих их марганцевых минералов (табл. 1). Железомарганцевые корки вулкана Беляевского имеют смоляно-черный или стально-серый цвет. Внешняя поверхность корок обычно гладкая или мелкобугорчатая, с мелкими сосцевидными бугорками на поверхности, полостями и порами, размером от нескольких до сотен микрон. Основная часть изученных образцов характеризуются брекчиевым строением, которое выражено наличием несортированных фрагментов марганцевых корок дресвяной и песчаной размерности и микроконкреций, заключенных в глинисто-известково-марганцевом матриксе и оксидно-марганцевом цементе (рис. 2, а, б). Встречаются замещенные оксигидроксидами марганца бывшие фосфатно-карбонатные(?) биофрагменты (рис. 2, б) и кремнистый биодетрит, преимущественно пеннатные диатомеи (рис. 2, г). В марганцевом цементе присутствуют многочисленные неровные трещины - свидетельства обезвоживания марганцевого геля (рис. 2, б). Отдельные участки корок обладают колломорфной структурой, образованной срастанием концентрически-зональных одноядерных и многоядерных микроглобул (рис. 2, в). В некоторых марганцевых слойках проявлена обломочная структура, образовавшаяся в результате растрескивания, обособления обломков (0.01-0.2 мм), их разворота и незначительного перемещения с заполнением образовавшихся пор и трещин тонкообломочным и глинистым материалом (рис. 2, е). Химический состав минералов, слагающих обломки, близок к бёрнесситу (табл. 1, сп. 18/03). На

стенках пор и в трещинах некоторых Мп-корок наблюдаются щетки кристаллов (рис. 2, ∂), ранее диагностированных рентгено-дифрактометрическим методом как пиролюзит [65, 66]. В брекчиевидных корках наблюдаются крупные зерна манганита и гидроманганита (рис. 2, \mathcal{K} , табл. 1, сп. 11/13, 12/13 и 14/14), с крустифицированным обрастанием их бёрнесситом (рис. 2, \mathcal{K} , сп. 6/30). Встречаются эллиптические зерна минерала, вероятно заполняющего камеры мелких фораминифер, с хорошо выраженной спайностью по ромбоэдру (рис. 2, 3). Состав основной массы зерна отвечает родохрозиту (Rh), а минералов, развивающихся по трещинам спайности – манганиту и бёрнесситу (рис. 2, 3, табл. 1).

Минеральный состав по данным рентгеновской дифрактометрии. Марганцевые минералы-оксиды нередко находятся в тончайшем переслаивании, взаимопрорастании или в микровыделениях сложной конфигурации, что не позволяет их сепаратного извлечения для рентгеноструктурного изучения. Поэтому дифрактограммы (рис. 3) чаще показывают интегрированную картину смеси различных минералов.

В образце трехслойной корки 2069-2-5 тонкий (2 мм) верхний слой сложен 7-Å гироксидом марганца (бёрнесситом), а середина – сложной смесью тодорокита, бёрнессита, пиролюзита, манганита и вернадита с примесью опала-КТ и биогенного опала-А диатомей. Присутствие последнего выражено аморфным горбом на дифрактограммах, в интервале углов 20 между 17° до 33° (рис. 3, обр. 2069-2-5, нижняя и средняя части корки). Нижний, брекчиевый слой корки 2069-2-5 имеет бурый цвет и полиминеральный состав. В нем преобладают тодорокит и вернадит, вероятно присутствие пиролюзита, манганита и гетита. Отражения с d/n = 3.65 и 2.84 Å, вероятно, принадлежат родохрозиту (рис. 3).

Дифрактограмма обр. 2069-2-3 схожа с дифракционной картиной верхней части корки 2069-2-5. Обе отражают мономинеральный бёрнеситовый состав тонкого (2–3 мм) поверхностного слоя в обоих

Рис. 2. Микроструктуры и микротекстуры марганцевых корок вулкана Беляевского.

a – микробрекчиевое строение нижнего слоя корки 2069-2-5, состоящего из несортированных обломков Mn-корок и микроконкреций, заключенных в марганцевом цементе; δ – корка с концентрически-зональными марганцевыми микроконкрециями (Mc) и раковинным биодетритом (Bd), замещенным тодорокитом (сп. 6/25), погруженными в бёрнесситовый цемент (сп. 7/25 и 8/25) с трещинами обезвоживания марганцевого геля (в нижней и правой части фото). Обр. 2069-П4; e – колломорфная структура марганцевой корки. Обр. 2069-2-5, e – манганит (Mn) в вернадит-бёрнессит-манганитовой корке 2069-2/2a, с реликтами диатомей (Diat.); ∂ – обрастание стенок пор в Mn-корке кристаллами пиролюзита. Обр. 2069-2/2a; e – фрагмент микробрекчированной корки, с порами, заполненными алеврито-пелитовым матриксом. Обр. 2069-2/2a; \mathcal{H} – дресвянисто-песчаный слой марганцевой корки, сложенный зернами гидроманганита (сп. 12/13 и 11/13), с крустифицированным обрастанием их бёрнесситом (сп. 6/30). Кристаллы медистого золота и самородного серебра в обломках манганита. Обр. 2069-2/2a; s – эллиптическое зерно родохрозита (Rh), замещаемого по трещинам спайности (показаны пунктиром) манганитом (Mn) или бёрнесситом (Bir). Обр. 2069-2-5.

Рис. 3. Дифрактограммы марганцевых корок вулкана Беляевского.

Bir – бёрнессит, Td – тодорокит, Pyr – пиролюзит, Mn – манганит, Ver – вернадит, Mgs – магнезит, Rh – родохрозит, Gth – гётит, Q – кварц, Opal-CT – опал-кристобалит-тридимит, Chl – хлорит.

образцах. В образце 2069-2-15-2 представлена смесь тодорокита, бёрнессита и пиролюзита со следовыми количествами кварца. Образец 2069-2-п7, по-видимому, представляет смесь манганита, тодорокита и бёрнессита с примесью вернадита (рис. 3). На электронно-микроскопических фотографиях манганит также узнается по удлиненно-призматическому габитусу кристаллов (рис. 2, *г*) и присутствию характерных двойников срастания и крестовидных двойников (рис. 6, 3).

Химический состав породообразующих минералов. По данным микрозондового анализа образцов Мп-корок вулкана Беляевского, отношения атомных количеств O/Mn в породообразующих минералах варьирует от 0.84 до 2.4, преимущественно от 1:1 до 2:4, что отражает большой диапазон степени окисленности Mn и минералогическое разнообразие слагающих корки оксигидроксидов Mn (рис. 4).

В Fe-Mn корках вулкана Беляевского породообразующими являются марганцевые минералы группы псиломелана-пиролюзита. Преобладают минералы марганца, не содержащие железа (табл. 1). Их составы соответствуют формульным выражениям манганозита, манганита, бёрнессита (или манжироита?), тодорокита, пиролюзита, вернадита или некоторых других минералов марганца. Железомарганцевые и хромистые минералы редки.

В колломорфных слоях корок (рис. 2, e) ядра микроглобул (темные на фото) содержат больше Na, Ca, Ba, молекулярной воды и около 1/3 марганца низшей степени окисленности (Mn²⁺). В формульном выражении химический состав ядер микроглобул весьма близок (табл. 1, сп. 34, 35, 37, 38). Светлые оболочки глобул содержат меньше молекулярной воды, щелочных и щелочноземельных элементов. Общее содержание Mn в них ниже и преобладает, повидимому, Mn⁴⁺ (табл. 1, сп. 33, 39, 40). Изменение состава марганцевых оксидов от ядра к оболочкам микроглобул свидетельствует о смене восстановительных (или субокислительных) условий осаждения

Беляевского.
сана
3y.IT.F
OK F
кор
ЫX
ineb
ган
Mal
пезо
же
LIOB
iepa
ШИ
хил
уюп
ipa3
100
odo
вп
0CT2
ай с
ескі
нии
Хил
a 1.
ЛИЦ
Ta6

Arr 60.85 11.7 14.1 04.1 0.31 0.16 1.01 0.97 32.43 0.17 1.10 84.40 0 5 Bec. 39.03 0.47 0.33 0.24 0.41 1.02 0.34 38.82 1 5 Bec. 39.03 0.647 0.33 0.24 0.12 0.34 34.30 88.82 1 5 Bec. 39.02 0.98 1.39 0.64 0.33 0.24 0.31 1.12 0.68 49.08 1 88.82 1 5 Bec. 3702 0.98 1.39 0.64 0.31 0.26 0.33 1.55 0.71 47.21 88.87 1 5 Bec. 25.30 0.51 1.00 0.71 47.31 87.87 1 1 47.31 1 87.34 1 87.34 1 1 35.34 1 1 36.31 36.36 1 1 37.35
Arr. $0.0.5$ $0.0.92$ 0.04 $0.0.5$ $0.0.6$ 50.75 84 5 Bec. 25.05 3.11 0.04 0.17 0.26 56.75 84 76. 53.12 1.00 0.40 0.17 0.24 13.5 0.76 45.50 84 76. 53.12 1.31 1.56 0.40 0.17 0.24 37.51 84 76. 55.72 1.84 2.06 0.39 0.23 0.22 0.33 34.45 87 25 Bec. 29.39 0.57 0.49 0.21 0.22 0.33 34.45 87 25 Bec. 29.39 0.57 0.40 0.20 0.14 0.22 0.33 34.45 87 25 Bec. 27.83 0.22 0.23 57.40 87 87 25 Bec. 27.84 0.33 0.22
AT. 00.07 5.00 0.92 1.42 0.004 1.35 0.70 45.00 5 Bec. 25.992 5.31 1.006 0.40 1.135 0.70 45.00 5 Bec. 25.992 5.31 1.006 0.40 0.17 0.441 1.325 0.70 45.00 5 Bec. 25.93 0.28 0.40 0.17 0.28 0.47 28.38 0.33 25 Bec. 29.39 0.57 0.49 0.39 0.28 0.20 47.50 45.00 Ar. 65.72 1.84 2.068 0.44 0.33 34.45 0.33 Ar. 65.72 1.84 0.39 0.22 0.35 35.40 0.33 Ar. 62.75 0.88 0.47 28.38 36.94 0.77 Sec. 27.84 0.31 0.23 0.22 0.33 37.57
All. 0.302 2.71 2.20 0.47 0.32 0.24 0.41 5.55 5 Bec. 30.68 0.47 0.32 0.24 0.11 5.55 30.29 5 Bec. 30.22 0.98 1.36 0.62 0.33 1.12 0.68 49.08 5 Bec. 27.03 3.40 0.62 0.32 0.34 47.21 47.21 5 Bec. 27.03 3.40 0.62 3.31 0.62 30.29 0.31 47.21 5 Bec. 27.03 3.40 0.62 3.31 0.62 30.29 33.81 5 Bec. 25.05 3.19 0.64 30.81 30.26 31.35 7 45.06 0.30 1.13 1.26 0.71 47.21 7 85.31 0.28 0.40 0.21 0.24 30.81 8
5 Bec. 29.97 1.99 1.63 9 1.63 0.47 1.18 0.93 48.30 5 Bec. 30.68 0.47 1.26 0.33 0.24 1.02 0.78 29.58 5 Arr. 63.02 2.91 2.26 0.33 0.65 0.41 50.3 0.41 50.3 29.58 29.48 29.58 34.30 20.58 34.30 20.58 34.30 20.58 30.29 34.30 20.58 30.29 53.1 47.1 47.21 47.20 47.47 47.21 47.20 5 Bec. 30.25 3.19 0.64 0.51 0.40 0.17 0.35 1.42 0.67 31.35 0.71 47.20 5 Bec. 25.05 3.11 10.04 0.51 0.26 0.11 35.5 0.71 47.50 7 Hei 0.25 5.11 0.26 0.21 0.23 0.26 37.51 7
N.t. West West <thwest< th=""> West West <th< td=""></th<></thwest<>
Att. $0.0.55$ 1.11 1.141 1.141 1.041 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.012 0.47 1.18 0.47 1.03 0.26 0.33 0.26 0.30 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.41 1.02 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.117 0.041 1.02 0.112 0.12 0.12
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Ar. 60.85 1.17 1.41 0.41 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.32 0.31 0.32 0.31 0.32 0.32 0.32 0.32 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.33 0.32 0.33 0.26 0.3 0.33 0.32 0.33 0.32 0.33 0.32 0.33 0.33 0.32 0.33 0.33 0.30 0.33 0.33 0.30 0.33 0.33 0.30 0.33 0.30 0.33 0.31 0.33 <
Ar. 60.85 1.17 1.41 1.41 0.41 0.3 5Bec. 29.97 1.99 1.63 0.41 0.32 0.41 0.3 5Bec. 30.68 0.657 0.38 0.266 0.38 0.266 0.24 5Bec. 30.68 0.657 0.98 1.39 0.266 0.266 0.28 5Bec. 30.22 0.98 1.39 0.664 0.266 0.266 5Ar. 64.04 1.45 1.94 0.627 0.28 0.266 5Ar. 65.05 3.19 0.64 0.28 0.26 5Bec. 25.05 3.19 0.64 0.28 0.41 0.20 7Ar. 69.27 1.84 2.06 0.47 0.20 0.28 7Ar. 65.72 1.84 2.06 0.47 0.20 0.23 5Bec. 25.31 1.00 0.28 0.47 0.20 0.22 7Ar. 65.72 1.84 2.06 0.28 0.26 0.22 7Ar. 65.72 1.84 2.06 0.24 0.22 0.22 7Ar. 65.72 1.84 2.06 0.26 0.23 0.22 8 25.76 0.28 0.26 0.23 0.22 0.22 7Ar. 65.29 0.83 0.26 0.23 0.22 8 25.77 1.18 1.94 0.20 <t< td=""></t<>
Ar. 60.85 1.17 1.41 0.41 5Bec. 29.7 1.99 1.63 0.32 0.24 5Bec. 23.02 2.91 2.26 0.33 0.22 5Bec. 30.68 0.47 0.32 0.22 5Bec. 30.22 0.98 1.39 0.22 5Bec. 30.22 0.98 1.39 0.22 5Bec. 30.22 0.98 1.39 0.24 7Ar. 64.04 1.45 1.94 0.23 7Ar. 64.04 1.45 1.94 0.26 7Ar. 60.57 5.30 0.92 0.40 5Bec. 27.03 3.40 0.62 0.47 6Ar. 60.57 5.30 0.92 0.47 5Bec. 25.05 3.19 0.64 0.21 7Ar. 61.13 1.00 0.41 0.21 7Ar. 61.24 0.28 0.49 0.21 7Bec. 25.05 3.11 0.29 0.25 7Ar. 62.75 0.82 0.68 0.40 7Ar. 61.64 0.20 0.40 0.21 7Bec. 29.33 0.57 0.40 0.21 7Bec. 29.33 0.57 0.40 0.25 7Bec. 29.33 0.57 0.40 0.25 7Bec. 20.38 0.68 0.68 <
AT. 60.85 1.17 1.41 1 5 Bec. 29.97 1.99 1.63 0.33 5 Bec. 29.91 1.63 0.33 0.65 0.33 5 Bec. 30.08 0.47 0.53 0.47 0.32 5 Bec. 30.22 0.98 1.39 0.65 0.38 5 Bec. 30.22 0.98 1.39 0.33 0.33 5 Bec. 27.03 3.40 0.65 0.33 0.34 64.04 1.45 1.94 0.64 0.33 0.34 0.34 5 Bec. 27.03 3.40 0.65 0.31 0.30 5 Bec. 25.05 3.19 0.64 0.33 0.40 5 Bec. 25.05 1.31 1.26 0.33 0.34 5 Bec. 25.05 1.31 1.26 0.33 0.40 5 Bec.
Ar. 60.85 1.17 1.41 1.41 5Bec. 29.97 1.99 1.63 5Ar. 63.02 2.91 2.26 5Bec. 30.68 0.47 0.47 5Bec. 30.68 0.47 0.65 Ar. 63.93 0.65 1.94 Ar. 63.93 3.40 0.65 Ar. 64.04 1.45 1.94 5Bec. 30.22 0.98 1.94 7Ar. 60.57 5.30 0.92 8Bec. 27.03 3.40 0.65 7Ar. 60.57 5.30 0.92 8Bec. 25.05 3.19 0.64 7Ar. 60.57 0.93 0.57 8Bec. 25.05 1.31 1.00 7Ar. 65.72 1.84 2.06 8Ar. 61.13 0.57 0.42 9Ar. 61.13 0.57 0.42 7Ar. 62.75 0.85 0.68 7Ar. 62.75 0.85 0.68 7Ar. 62.75 0.82 8 24.64 1.24 1.84 0.20 9Ar. 61.64 0.22 10Bec. 29.63 0.57 10Bec. 29.63 0.82 10Bec. 20.68 1.04 10Bec. 20.68 1.04 10Bec. 20.63 0.62 <
Ar. 60.85 1.17 1.41 5Bec. 29.97 1.99 1.63 5Bec. 29.91 2.26 5Bec. 30.68 0.47 5Bec. 30.68 0.47 61.02 2.91 2.26 Ar. 63.93 0.65 Ar. 63.93 0.65 Ar. 63.93 0.66 Ar. 64.04 1.45 1.94 5Bec. 30.22 0.98 1.39 6Ar. 64.04 1.45 1.94 7Ar. 61.13 3.40 0.62 8Bec. 25.05 3.19 0.64 9Ar. 60.77 5.30 0.92 7Bec. 25.05 3.19 0.64 25Bec. 25.05 1.84 0.28 7Ar. 61.13 0.57 0.49 25Bec. 29.39 0.57 0.49 26Bec. 27.83 0.212 2.98 27Bec. 29.63 0.212 2.98 28Ar. 61.64 0.42 Ar. 59.72 2.00 3.11 70Bec. 26.75 0.98 1.04 Ar. 59.72 2.00 3.11 70Bec. 28.33 3.63 0.82 Ar. 61.28 1.57 1.27 1.27 Ar. 61.28 1.57 1.67 Ar. 61.28 1.57 1.57 <
Ar. 60.85 1.17 5 Bec. 29.97 1.99 5 Bec. 29.97 1.99 5 Bec. 23.02 2.91 5 Bec. 30.68 1.17 5 Bec. 30.68 1.45 7 63.02 0.93 1.45 7 Ar. 63.03 3.40 7 Ar. 63.93 3.40 7 Ar. 60.57 5.30 5 Bec. 27.03 3.40 7 Ar. 60.57 5.31 5 Bec. 25.05 3.19 7 Ar. 61.13 1.44 7 Ar. 61.13 1.44 7 Ar. 61.13 1.24 7 Ar. 61.13 1.24 7 Ar. 62.75 1.84 7 Ar. 61.64 1.24 7 Ar. 62.75
AT. 60.85 5 Bec. 29.97 5 Bec. 29.97 5 Bec. 30.68 5 Bec. 30.02 5 Bec. 30.03 5 Bec. 30.22 64.04 1 5 Bec. 30.22 64.04 1 5 Bec. 30.22 5 Bec. 27.03 5 Bec. 25.05 5 Bec. 25.93 7 Ar. 61.13 7 Ar. 61.13 7 Ar. 61.13 7 Ar. 62.75 7 Ar. 61.64 7 Ar. 61.64 7 Ar. 62.75 7 Ar. 59.20 7 Ar. 61.64 8 25 Bec. 70 Bec. 29.63 8 26.75 6 7 Ar. 61.28 8 27.23 5 7 Ar. 61.23 8 26.75 6 9 27.23 5 7 Ar. <
AT. AT. 5 Bec. 5 Bec. 5 Bec. 6 AT. 7 AT. 7 AT. 7 AT. 6 AT. 6 AT. 7 AT. 7 AT. 7 AT. 7 AT. 7 AT. 7 AT. 8 C. 7 AT. 8 C. 8 AT. 8 AT. 8 AT. 9 AT. 9 AT. 8 AT. 9 AT. 9
<u> <u> </u></u>

Минералы в марганцевых образованиях вулкана Беляевского

59

Mapcanteean kopka Mapcanteean kopka 2069-2-5 II % O Na Mg AI Si P CI K Si Ba Σ P Ke 518< 1.06 0.23 1.14 0.45 50.15 0.05 0.54 9.41 Arr 63.85 1.04 1.99 0.10 0.10 0.10 0.16 0.37 50.65 0.55 0.53 9.13 Arr 63.85 1.04 1.99 0.10 0.16 0.36 0.30 0.33119 0.44 2.65 9.13 9.13 Arr 63.05 0.13 0.14 0.36 0.30 0.33 10.9 9.109 Arr 64.02 0.39 0.16 0.38 0.31 0.14 1.34 9.10 Arr 63.19 1.47 1.34 0.46 50.15 0.34 0.56 9.10 Arr 60.28 0.09 1.01 0.10 <		Формула, минерал	$Mg_{0.40}Na_{0.36}K_{0.22}Ba_{0.10}Ca_{0.09}Sr_{0.04}Mn^{2+}{}_{0.02}Mn^{4+}{}_{5.53}O_{12}\cdot 3.6H_2O$	Тодорокит	$\left (Na_{0,35}Mg_{0.38}K_{0.21}Ba_{0.12}Ca_{0.07}Sr_{0.03}Si_{0.02})Mn^{2+}_{0.014}Mn^{4+}_{6.27}O_{12}, 4H_2O\right \\$	Тодорокит	$(Mg_{0.72}Na_{0.62}K_{0.22}Ca_{0.09}Fe_{0.08}Ti_{0.06})Mn^{2+}_{1.73}Mn^{4+}_{5.43}O_{14}$.4H ₂ O	Бёрнессит	$(Mg_{0.012}Si_{0.018}P_{0.007}Al_{0.005})(Mn^{2+}_{0.239}Mn^{4+}_{-0.844})O_{2.00}$	Манганит	$(Na_{0.35}Mg_{0.33}K_{0.21}Ba_{0.13}Ca_{0.08}Sr_{0.04})Mn^{4+}_{5.56}O_{12} \cdot 3.3H_2O$	Тодорокит	$(Na_{0,42}Mg_{0.38}Ba_{0.23}K_{0.22}Ca_{0.12}Sr_{0.06})Mn^{2+}_{2.07}Mn^{4+}_{4.41}O_{12}\cdot 9H_2O$	3	$(Na_{0.53}Mg_{0.40}K_{0.23}Ba_{0.18}Ca_{0.13}P_{0.04}Si_{0.04}Al_{0.02})Mn^{2+}_{2.70}Mn^{4+}_{4.00}O_{12}$ $g.9H_2O$	÷	$(Na_{0.39}Mg_{0.32}K_{0.17}Ba_{0.12}Ca_{0.12})Mn^{2+}_{2.07}Mn^{4+}_{4.41}O_{12}\cdot 7H_2O$	÷	$[(Na_{0,42}Mg_{0.31}Ba_{0.22}K_{0.21}Ca_{0.13}Sr_{0.07}Si_{0.05})Mn^{2+}_{2.43}Mn^{4+}_{4.21}O_{12}\cdot \delta H_2O$	5	$(Na_{0,43}Mg_{0,30}Ba_{0,22}K_{0,20}Ca_{0,14}Si_{0.06}Sr_{0.05}P_{0.04})Mn^{2+}_{2.55}Mn^{4+}_{4.10}O_{12}\cdot 7H_{2}O$	÷	$(Na_{0.32}Mg_{0.32}K_{0.21}Ba_{0.17}Ca_{0.09}Sr_{0.04})Mn^{2+}{}_{0.35}Mn^{4+}{}_{5.38}O_{12}\cdot 3.3H_2O$	Тодорокит	$\left(Na_{0,32}Mg_{0,30}K_{0,20}Ba_{0,17}Ca_{0,09}Sr_{0,05}Si_{0,04} \right) Mn^{2+}_{-0,39}Mn^{4+}_{-5,33}O_{12}\cdot 3H_2O$	Тодорокит	$(Na_{0,42}Mg_{0,41}K_{0.19}Ba_{0.14}Al_{0.09}Ca_{0.08})Mn^{2+}_{1.72}Mn^{4+}_{4.60}O_{12}.6H_2O$	Тодорокит	$(Na_{0.35}Mg_{0.24}Ba_{0.21}K_{0.18}Ca_{0.10}Sr_{0.03})Mn^{4+}_{5.51}O_{12} \cdot 2.6H_2O$	Тодорокит	$[(Na_{0,31}Mg_{0,24}Ba_{0,21}K_{0.18}Ca_{0,11}Sr_{0,04})Mn^{2+},_{0,39}Mn^{4+},_{5,38}O_{12},3.8H_2O$	Тодорокит	$(Na_{0.36}Mg_{0.29}K_{0.21}Ba_{0.18}Ca_{0.08}Sr_{0.03})Mn^{2+}{}_{0.18}Mn^{4+}{}_{5.48}O_{12}\cdot 3.5H_2O$	Тодорокит
Androcumpteent vorpera Androcumpteent vorpera 2005 11 % 0 Na Mg AI Si P CI K Ca Ti Mn Fe Sr Ba 3136 1:36 1:36 0.37 0.35 2:32 2:33 0.34 0.37 0.35 0.35 0.34 0.35 0.35 0.34 0.35 0.35 0.34 0.35 0.35 0.44 0.35 0	0-2-5	Σ	90.46		89.41		91.39		88.65		91.09		80.98		<i>2</i> 9.68		83.89		82.74		83.94		91.46		91.44		84.64		92.90		90.21		68'06	
The second se	a 2069	Ba	2.32	0.54	2.65	0.63					2.93	0.68	4.09	1.14	3.11	0.87	2.32	0.61	3.98	1.09	4.07	1.09	3.67	0.87	3.78	0.89	2.70	0.70	4.96	1.15	4.68	1.13	4.05	0.96
T. % O Na Mg Al Si P Ci K Ca Ti Mn Fe 9 Bec. 3136 1.36 1.61 0.23 N Mg Al Si P Ci K Ca Ti Mn Fe 9 Bec. 3123 1.44 1.48 0.08 0.17 1.30 0.46 50.15 0.35 5.65 Ar. 63.05 2.24 0.13 0.48 0.20 0.36 0.3	я корк	\mathbf{Sr}	0.55	0.20	0.44	0.16					0.51	0.19	0.71	0.31					6L'0	0.34	0.55	0.23	0.55	0.20	0.66	0.25			0.50	0.18	0.61	0.23	0.49	0.18
Ti. % O Na Mg All Si P Cl K Ca Ti Mn 9 Bec. 31.86 1.36 1.61 0.23 N N Mn 55.56 S0.55	нцевал	Fe					0.63	0.36																										
γ_6 O Na Mg Al Si P Cl K Ca Ti 9 Bec. 31.86 1.36 1.61 0.23 N N Ca Ti 0 Bec. 31.86 1.90 2.12 0.23 N N Ca Ti 7 Ar. 63.85 1.90 2.12 0.23 0.10 0.17 1.30 0.46 23 5 Bec. 30.62 1.95 2.40 0.13 0.48 0.20 0.36 0.34 0.24 7 Ar. 64.02 0.39 0.16 0.58 0.21 0.46 23 7 Ar. 63.99 2.05 1.34 0.20 0.36 0.34 0.34 7 Ar. 63.99 2.05 1.34 1.34 0.66 24 7 Ar. 60.28 0.01 0.01 0.17 1.10 0.46 27 <tr< td=""><td>Марга</td><td>Mn</td><td>50.56</td><td>29.51</td><td>50.15</td><td>29.78</td><td>53.75</td><td>31.19</td><td>56.92</td><td>34.65</td><td>50.84</td><td>29.65</td><td>46.74</td><td>32.56</td><td>t7.03</td><td>33.05</td><td>50.22</td><td>32.85</td><td>t8.29</td><td>33.12</td><td>t8.69</td><td>32.73</td><td>51.19</td><td>30.20</td><td>51.08</td><td>30.19</td><td>t9.62</td><td>32.09</td><td>50.80</td><td>29.50</td><td>50.50</td><td>30.60</td><td>50.70</td><td>30.09</td></tr<>	Марга	Mn	50.56	29.51	50.15	29.78	53.75	31.19	56.92	34.65	50.84	29.65	46.74	32.56	t7.03	33.05	50.22	32.85	t8.29	33.12	t8.69	32.73	51.19	30.20	51.08	30.19	t9.62	32.09	50.80	29.50	50.50	30.60	50.70	30.09
m m <td></td> <td>Ţ.</td> <td>47</td> <td>.,</td> <td>41</td> <td></td> <td>0.36</td> <td>0.24</td> <td>47</td> <td>(.,</td> <td>47</td> <td>(1</td> <td>7</td> <td></td> <td>7</td> <td></td> <td>47</td> <td></td> <td>7</td> <td></td> <td>7</td> <td></td> <td>47</td> <td>(.,</td> <td>47</td> <td>(.)</td> <td>7</td> <td>(.,</td> <td>47</td> <td></td> <td></td> <td>(1</td> <td>47</td> <td></td>		Ţ.	47	.,	41		0.36	0.24	47	(.,	47	(1	7		7		47		7		7		47	(.,	47	(.)	7	(.,	47			(1	47	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Са	0.57	0.46	0.46	0.37	0.50	0.40			0.50	0.40	0.63	0.61	0.67	0.64	0.66	0.59	0.68	0.64	0.73	0.67	0.56	0.45	0.56	0.46	0.45	0.40	0.66	0.53	0.68	0.56	0.51	0.42
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		К	.40	.15 (.30 (60.	.17 (.96			.34 (.10	.14	E.	16	.14	.96	.88	.11 (.07	.06	00.	.32 (.10	.27 (90.	.04	.94	.17 (.95 (60.	.93 (.34 (.12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		CI	_]	.17	.16	_	0			.20	.18	_					0	[_	_		.30	.27	.19	.18	.16	.17	.18	.16	[0	-	
Dir. % O Na Mg AI Si 9 Bec. 31.86 1.36 1.61 0.23 A 7 Ar. 63.85 1.90 2.12 0.23 A 5 Bec. 31.23 1.44 1.48 0.08 A 5 Bec. 30.62 1.95 2.40 0.10 A 7 Bec. 30.63 2.04 1.99 0.10 0.10 7 Bec. 30.63 1.61.01 2.70 3.14 0.28 0.13 0.48 7 Ar. 61.01 2.70 3.14 1.34 0.10 0.19 7 Ar. 60.28 2.09 1.99 0.16 0.58 0 7 Bec. 25.20 1.21 1.21 0.22 0 7 Bec. 25.95 1.26 1.11 0.22 0 7 Ar. 60.28 2.00 1.		Ь			0	0			0.20	0.21	0	0			0.17	0.22).16	0.20	0	0	0	0	0	0	0	0				
Dir. % O Na Mg AI 9 Bec. 31.86 1.36 1.61 0.23 Ar. 63.85 1.90 2.12 0.23 Ar. 63.85 1.90 2.12 0.23 Ar. 63.85 1.90 2.12 0.23 Ar. 63.63 2.04 1.99 0 Ar. 61.01 2.70 3.14 1.48 0 Ar. 61.01 2.70 3.14 1.48 0 0 3 Bec. 30.63 2.04 1.99 0 0 0 3 Bec. 31.96 1.47 1.34 0		Si			.08	0.10).48 ().58 ().13 ().18			.19).26).22 (0.28			.19).22								
Dir. % O Na Mg 9 Bec. 31.86 1.36 1.61 0 Ar. 63.85 1.90 2.12 0 Ar. 63.85 1.90 2.12 0 Ar. 63.85 1.90 2.12 0 Ar. 63.68 2.04 1.99 2.14 Ar. 61.01 2.70 3.14 1.93 Ar. 61.01 2.70 3.14 1.93 Ar. 61.01 2.70 1.95 2.40 Ar. 61.01 2.70 3.14 1.93 Ar. 61.01 2.70 1.25 0 Ar. 60.28 2.09 1.90 0 Ar. 60.28 2.09 1.90 0 Ar. 61.32 1.26 1.11 0 Ar. 63.99 2.05 1.77 0 Ar. 63.29 1.26 1.11 0		Al	.23	.27)	<u> </u>			.13 (.16 (.08 (.12)	<u> </u>)	0)	<u> </u>	.34	.45						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Mg	.61 (.12 (.48	<u> </u>	.40	.14	.28 (.39 (.34	.77	.21	.90	.25 () 66.	.11	.63	.01	.56	.11	69.	.26	.68	.18	.58	.42 (.07	.96	.26	.92	.25	.16	.55
Dir % O 9 Bec. 31.86 1 Ar. 63.85 1 Ar. 63.85 1 Ar. 63.85 1 Ar. 63.63 2 Ar. 63.63 2 Ar. 63.68 2 Ar. 61.01 2 Ar. 61.01 2 Ar. 61.01 2 Ar. 60.28 2 Ar. 60.29 2 Ar. 60.33 1 Ar. 60.39 2 Ar. 60.89 2 Ar. 60.89 2 Ar. 60.89 2 Ar. 60.89 2		Na	.36 1	.90 2	.44 1	<u>-0</u>	.95 2	.70 3	0	0	.47 1	.05 1	.26 1	.09	.55 1	.61 1	.28 1	.00	.26 1	.07	.32 1	.12	.39 1	.95 1	.31 1	.85 1	.49 1	.30 2	.45 0	.01 1	.13 0	.64 1	.35 1	.92
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	.86 1	.85 1	.23 1	.68 2	.62 1	.01 2	.63	.02	.96 1	.99 2	.20 1	28 2	.53 1	.17 2	.35 1	.43 2	.41 1	.85 2	.95 1	.90 2	.23 1	.28 1	.20 1	.33 1	.42 1	.89 2	.22 1	.25 2	59 1	.64 1	.29 1	.77 1
N N		9	c. 31	. 63	c. 31	. 63	c. 30	. 61	c. 30	. 64	c. 31	. 63	c. 25	. 60	c. 24	. 59	c. 27	. 61	c. 25	. 59	c. 25	. 59	c. 31	. 63	c. 31	. 63	c. 27	. 60	c. 32	. 64	c. 30	. 63	c. 31	. 63
		ДП. 9	9 Be	AT	0 Be	A_{T}	5 Be	AT	9 Be	A_{T}	3 Be	AT	4 Be	AT	5 Be	$A_{\rm T}$	6 Be	$A_{\rm T}$	7 Be	A_{T}	8 Be	$A_{\rm T}$	9 Be	A_{T}	0 Be	A_{T}	8 Be	A_{T}	1 Be	A_{T}	2 Be	AT	8 Be	AT

Таблица 1. (Продолжение).

Волохин, Михайлик, Михайлик

Марганцевая корка 2069-2/2а	K Ca Cr Mn Fe Cu Z	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1.21}{1.21} \frac{1.76}{0.76} \frac{1.21}{45.86} \frac{1.21}{80.36} \frac{1.21}{(Na_{0.6}K_{0.5}Ma_{0.5})Ca_{0.15})Mn^{24}_{-4.0}(1.7H_{0.0})}$	1.10 0.67 29.49 Development of the second se	$1.12 1.2 1.59 46.77 85.42 (Na_{0.91}Mg_{0.60}Ca_{0.30}K_{0.22})Mn^{2+}_{0.07}Mn^{4+}_{6.19}O_{14}nH_2O$	0.94 1.30 27.95 Eepheccum	$ \left 0.55 \right 2.24 \left \left 47.98 \right \right \left 84.49 \right \left(Na_{0.20}^{0}Ca_{0.08}^{0}K_{0.02}^{0} \right) (Mn^{2+}_{0.94}Mn^{4+}_{0.15})_{1.29}^{1.29}O_{1.88}^{1.88} (SO_{4})_{0.03}^{0.13} \cdot H_{2}^{0} O_{1.88}^{1.20} + H_{2}^{1.20} O_{1.88}^{1.20} + H_{2}^{1.20} O_{1.20}^{1.20} + H_{2}^{1.20} + H_{2}^{1.20} O_{1.20}^{1.20} + H_{2}^{1.20} O_{1.20}^{1.20} + H_{2}^{1.20} + H_{2}^{1.20$	0.49 1.96 30.61 20.61 7идроманганит	0.61 2.22 45.58 80.12 $Na_{0.13}Ca_{0.07}Mg_{0.07}K_{0.02}Mn^{2+}_{0.52}Mn^{4+}_{0.51}(0, OH)F_{0.22}$	0.57 2.02 30.33 [[[Udpomanzanum]	$ 1.05 1.12 $ $ 49.77 $ $ 88.81 (Na_{1.12}Mg_{0.12}Ca_{0.22}K_{0.22})Mn^{2+}_{1.61}Mn^{4+}_{5.62}O_{14}$	0.86 0.89 29.06 <i>Бёрнессит</i>	$ 1.18 1.76 $ $ 48.00 $ $ 85.28 (Na_{0.92}Mg_{0.42}Ca_{0.35}K_{0.24})Mn^{2+}_{1.25}Mn^{4+}_{5.70}O_{14}nH_{2}O$	1.02 1.48 29.35 Epidemic 29.35 Epidecum	$ 1.02 1.47 $ $ 48.17 $ $ 95.34 (Na_{0.16}Mg_{0.05}Ca_{0.03}K_{0.02})(Mn^{2+} Mn^{4+})_{0.75}(O, OH)_2$	0.73 1.02 24.43 Mahzahum	$ \left 0.94 \right 2.34 \left \left 44.90 \right \right \left 0.49 \right 74.71 \right \left (Na_{0.18}Mg_{0.10}Ca_{0.10}K_{0.04}Cu_{0.01})(Mn^{2+}Mn^{4+})_{1.33}(O,OH)_{2^{*}}MH_{2}O(O,OH)$	1.01 2.43 34.01 0.32 <i>Гидроманганит</i>	$ \begin{bmatrix} 1.04 & 2.23 \\ 2.54 & 2.72 \\ 2.77 & 2.72 \\ 3.77 & 3.72$	$\frac{1.21}{1.11} - \frac{2.07}{77} - \frac{29.09}{58.98} - \frac{94.07}{10} - \frac{10}{10} - \frac$	1.14 2.50 42.89 04.97 (1336) 14^{13} 0.12^{26} 0.11 0.053 0.013 0.013 0.013 0.012 0.011 0.020 0.012 0.011 0.012 0.011 0.012 0.01	1.17 1.09	1.02 0.93 30.37 55 55 55 55 55 55 55 55 55 55 55 55 55	$\begin{bmatrix} 0.69 & 1.17 \\ 0.69 & 29.29 \\ 0.62 & 0.78 \\ 0.62 & 0.78 \\ 0.62 & 0.78 \\ 0.62 & 0.78 \\ 0.62 & 0.18 \\ 0.14 & 0.10 \\ 0.4 & 3^{2} & 3^{2} & 0.10 \\ 0.4 & 3^{4} & 0.10 \\ 0.4 & 3^{4} & 0.10 \\ 0.4 & 3^{4} & 0.10 \\ 0.4 & 3^{4} & 0.10 \\ 0.4 & 0.1$	0.21 0.84 13.96 10.73 1 15.96 10.73	Конкреция в марганцевой корке 2069-2-5	Мп Sr Ba C <u>Σ</u> Формула, минерал	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28.06 0.00 bëpneccum	$42.30 0.44 2.11 10.04 100.17 (Mn_{0.89}Na_{0.06}Mg_{0.05}K_{0.03}Ca_{0.016}Ba_{0.017}Sr_{0.09}O_{0.97}O_{3}$ 17.69 0.12 0.35 19.21 Podoxposum	$\frac{37.41}{2.2} \qquad 0.83 \qquad 11.59 \qquad 99.93 \qquad (Mn_{0.71}Mg_{0.06}Na_{0.05}K_{0.02}Ca_{0.01}Ba_{0.006})C_{1.00}O_{3}$	14.55 D.13 20.59 Podoxposum	34.80 0.99 17.35 100.50 (Mh _{0.70} Mg _{0.07} Na _{0.05} K _{0.02} Ca _{0.01} Ba _{0.01})C _{1.00} O ₃
		(Na _{0.20} Μξ	$(Na_{1.10}K_{0.10})$	(Na _{0.60} Ca ₄	(Nan ok Kn	.n0. 201	(Na _{0.91} M£		(Na _{0.20} Ca _t		$Na_{0.13}Ca_{0.}$		(Na _{1.12} Μξ		(Na _{0.92} Μξ		(Na _{0.16} Μξ		(Na _{0.18} Μξ		(Na _{0.28} Ca ₁	ONo Mo	(1440.141AI	(Na _{1.36} Μξ		$(Na_{0.81}Si_0)$				$Na_{0.43}K_{0.21}C_{\delta}$		Na _{0.06} Mg _{0.05} l	$Mg_{0.06}Na_{0.05}I$		Mg _{0.07} Na _{0.05} l
	Σ	72.50	84.72	81.33	80.36		85.42		84.49		80.12		88.81		85.28		95.34		74.71		71.45	0107	04.77	85.12		95.34		69-2-5		Mg0.55		Mn _{0.89} M	Mn _{0.71} N		Mn _{0.70} N
59-2/2a	e Cu	10.0																	0.49	0.32						8/	/3	рке 20	Σ	9.46 (00.17 (9.93 (00.50 ((
рка 20	In	51 0.45 56 0.30	86 10	60	86	65	77	95	98	51	58	33	77	90	00	35	17	43	06	01	49 7	0/00	89 80	60	37	59 20.3	96 IU.	евой ко	с U	0.00 8	0.00	0.04 1 9.21	1.59 9	60.0	7.35 1
цевая ко	Cr N	33.(22.:	47.3 29.	52 32.0 68 20.0	45.	29.	46.'	27.5	47.5	30.0	45	30.	49.	29.0	48.0	29.	48.	24.	44	34.(45.	50.	42.9	49.0	30.	26.	13.	<i>иарганц</i>	_		-	11 35 1 1	33	5	90 1
Ларган	Ca C	64 51	85 71	83 15. 63 10.	01 9L	67	59	30	24	96	22	02	12	89	76	48	47	02	34	43	23	+	50 +	60	93	17	84	v ө вића	Β			4 0 0 0	0.8	0.	00
V	K (61 1. 58 1.:	33 0. 14 0.	73 1.3 67 1.4	21 0.	10 0.0	12 1.	94 1.	55 2.2	49 1.9	61 2.3	57 2.0	05 1.	86 0.3	18 1.	02 1.4	02 1.4	73 1.0	94 2	01 2.4	07 70 70	17 2	18 14	17 1.0	02 0.	69 1.	51 U.S	Конкре	\mathbf{Sr}	6	9	0 0.4 0.1		2	0 4
	Cl	.10 0. .15 0.	.39 1. .37 1.	.91 0.0	39 1.	39 1.	.37 1.	.34 0.	.56 0.	.56 0.	.72 0.	.75 0.	.36 1.	.32 0.	.42 1.	.40 1.	.32 1.	.26 0.	.73 0.	.85 1.	.65 	.0. 77 1.	.87 1.	.31 1.	.30 1.	.28 0.	.23 0.		Mn	49.8	28.0	42.3 17.6	37.4	14.5	34.8
	s	.92 1 .05 1	0 0	00		0	0.18 0	.19 0		79 0	0.17 0	.19 0	.31 0	.31 0	.41 0	.43 0	0.27 0	0.23 0	0.26	.34 0	0.14	0 07.0	0 0 0.20	.13 0	0.13	0	0		Ca	0.55	0.42	$0.54 \\ 0.31$	0.42	0.22	0.86
	\mathbf{Si}	0.26 (0.34 1)						0	(1		0	0	1	_)	()	0	0.23 (0.35 (0.11 0		0.29	0.08 (0.10	1.73	1.77		K	1.27	1.00	1.07 0.63	0.83	0.40	1.45
	Al																									1.64	c/.1		CI	0.17	0.15				
	Mg	1.66 2.52	0.82 1.12	1.20	0.69	1.00	2.07	2.80	1.46	2.11	1.44	2.16	1.36	1.80	1.59	2.20	1.88	2.15	1.63	2.78	1.50	1 81	3.01	1.17	1.63	1.14	1.35		1g	5 <u>;</u>	.57	.15 .08	.50	.32	45 2 45
	Na	$3.75 \\ 6.02$	3.63 5.27	2.25	3.06	4.70	3.03	4.33	3.55	5.41	2.87	4.57	3.43	4.79	2.94	4.29	4.39	5.32	3.04	5.50	3.68	07.1 07.1	4.02 4.02	4.08	6.03	3.17	3.97		r V	<u>12</u>)3 2	6] [] []	01 1	14 1	1
	F	4.60 8.93									3.27	6.30																	Ž	$\frac{1.5}{1.5}$	77 2.(42 <u></u>	34 1.(81 0.5).1 1.1
	0	23.89 55.05	29.83 62.29	26.79 59.93	28.38	62.66	30.29	62.15	25.59	56.07	23.24	53.10	30.41	60.97	28.97	60.84	37.82	65.86	20.15	52.41	16.61	17.70	44.95	28.00	59.49	36.00	64.89	·	0	34.(65.	41. 59.4	46.5	91.5	43.6
	0%	Bec. AT.	Bec. AT.	Bec. ∆⊤	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	3 Bec.	AT.	l Bec.	AT.	t Bec.	AT.	Bec.	AT.	Bec.	Dar	AT.	Bec.	AT.	Bec.	AT.		%	Bec.	AT.	Bec. A ^T .	Bec.	AT.	Bec.
									n		n		n n				T										- 1								

Таблица 1. (Окончание).

Минералы в марганцевых образованиях вулкана Беляевского

61

Рис. 4. Зависимость содержания Mn от O в породообразующих марганцевых минералах корок вулкана Беляевского по данным микрозондового анализа.

a – в минералах в целом, δ – за вычетом кислорода, связанного с Na, K, Mg, Ca, Ba, Sr, Fe, Si, Al и P. Марганцевые корки: l – обр. 2069-2/2a, 2 – обр. 2069-П4, 3 – обр. 2069-2-5.

Mn на стадии образования зародышей микроглобул окислительными при формировании их светлых оболочек. Однако в Mn-цементе, заполняющем пространство между микроглобулами и окаймляющем стенки пор, оксиды марганца могут содержать больше воды и Mn²⁺ (табл. 1, сп. 36).

В слоях Мп-корок (рис. 2, δ , обр. 2069-П4), где присутствуют обломочные зерна и биофрагменты, химический состав биофрагментов соответствует тодорокиту (табл. 1, сп. 6/25), а темных зерен-включений – гидроманганиту (сп. 14/25, сп. 15/25). Белая оторочка обломков не содержит щелочей, но имеет примесь Si и P (рис. 2, δ , табл. 1, сп. 9/25). Марганцевый цемент характеризуется высокими содержаниями Na (до 3.4 % вес.), а состав слагающего его минерала соответствует бёрнесситу (табл. 1, сп. 7/25, сп. 8/25). Белые пятна, наложенные на бёрнесситовый цемент (рис. 2, δ), сложены манганатом с низким содержанием щелочей и содержат примесь Si и P (табл. 1, сп. 13/25).

Строение и состав марганцевых микроконкреций. Микроконкреции, присутствующие в корках, характеризуются концентрически-зональным строением и контрастным минеральным составом, отражающим периодические изменения поступавших при их росте тонкой взвеси и растворов. В микроконкрециях выделяется ядро (220 × 150 мкм), имеющее дендритовую микротекстуру и состав (Na₁₁₀K_{0.26}Mg_{0.25} $(Ca_{0.16})_{1.77}(Mn_{0.17}^{2+}Mn_{6.37}^{4+})_{6.54}O_{14}\cdot nH_2O)$ (puc. 5, *a* u табл. 1, сп. 1), который идентичен составу бёрнессита марганцевого цемента, заключающего микроконкрецию: (Na_{0.96}K_{0.25}Mg_{0.22}Ca_{0.15})_{*I.58*}(Mn²⁺_{0.16}Mn⁴⁺_{6.43})_{6.59}O₁₄· nH₂O) (рис. 5, табл. 1, сп. 5). Слоистая оболочка микроконкреции представлена чередованием ламинарных (20-80 мкм) и метаколлоидных (100-200 мкм) пакетов (рис. 5, б). Химический состав ламин (рис. 5, табл. 1, сп. 3) отвечает составу тодорокита. Для метаколлоидных слоев характерна пятнистая наложенная минерализация (белые пятна), представляющая гидроксиды Mn с чрезвычайно низким содержанием Ca²⁺, Si⁴⁺, Al³⁺, Р⁵⁺ и других чужеродных катионов. Их состав, по-видимому, отвечает составу манганита или гидроманганита (рис. 5, табл. 1, сп. 4). Эта наложенная минерализация может рассматриваться как результат вторичных изменений, связанных с выносом щелочных и щелочноземельных катионов, при обезвоживании колломорфных слоев. Подобные измене-

Рис. 5. Карты распределения Si, Ba, K, O, Mn и C в микроконкреции из марганцевой корки 2069-П4 вулкана Беляевского.

a – общий вид марганцевой микроконкреции; δ – чередование ламинарных и метаколлоидных слоев в оболочке микроконкреции. Ниже – карты распределения Si, Ba, K, O, Mn и C в выделенной прямоугольником части оболочки (режим COMP, вид в обратно-рассеянных электронах).

ния местами затрагивают и заключающий микроконкрецию бёрнесситовый цемент, где наложенная минерализация имеет близкий состав (табл. 1, сп. 6).

АКЦЕССОРНЫЕ МИНЕРАЛЫ В МАРГАНЦЕВЫХ КОРКАХ

Среди акцессорных минералов распространены оксиды железа: магнетит, титаномагнетит, гематит (или маггемит), титаногематит и якобсит (табл. 2). Магнетит и гематит часто образуют микросферулы, размером до 5-6 мкм, которые заключены в обломках гидроманганита или в массе корки, сложенной бёрнесситом (рис. 6, а, в). Микросферулы магнетита нередко являются ядрами более крупных марганцевых сферул или сростковых Мп-микроконкреций. Они, по-видимому, представляли вулканическую пыль, попавшую в высокопористые металлоносные отложения до их уплотнения и раскристаллизации. Характерно, что микросферулы как гематита, так и магнетита нередко содержат повышенные содержания тербия (табл. 2). Это позволяет считать их связанными с одним источником и предположить, что как гематит, так и титаногематит могут быть продуктами более позднего окисления первичных магнетита и титаномагнетита. Распространены оксиды Pb, Cu, близкие по химическому составу массикоту (или глёту) (PbO), тенориту (CuO) (табл. 2).

Марганцевые минералы-акцессории образуют четко очерченные микровыделения. В большинстве случаев они резко отличаются по составу от заключающего их марганцевого матрикса корок. Они содержат значительные количества Cu, Zn, Sn, Рb и W, а их химический состав близко соответствует формульным выражениям квенселита (РbМnO₂[OH]), гетеролита (ZnMn₂O₄), гидрогетеролита (ZnMn, O_4 ·H,O), манганотанталита (MnTa,O₆) и тунгомелана – (Mn, W)O₂·H₂O. Встречаются оксиды Mn с высокими содержаниями Sr и Ti, состав которых может быть выражен формулами: ~SrTiMn₂(OH)₁₃ или SrTiMn(OH)₈ (табл. 2, сп. 1/02, 6/02). Эти включения могут представлять собой состоящие в различной пропорции микросмеси таусонита (SrTiO₃) и Mn(OH⁻)₅: сп. 1/02 – 0.28(Sr-ТіО₃)·0.72(Na,Mg,Ca,K)_{0.33}Mn(OH⁻)₅, и сп. 6/02 – $0.44(SrTiO_3) \cdot 0.56(Na,Mg,Ca,K)_{0.2}Mn(OH^{-})_{5}).$

Среди марганцевых акцессорных минералов распространены оксиды Cu, Sn и Mn, с варьирующими содержаниями этих элементов. Их составы могут рассматриваться как промежуточные между составами креднерита (Cu₂Mn₂O₅), викманита (MnSn(OH)₆) и тенорита (CuO) (табл. 2, сп. 24/02–1/30). Количества меди и олова в этих минералах находятся в обратной зависимости от содержания как марганца, так и кислорода, тогда как Mn положительно коррелирует с кислородом (рис. 7). Предполагается, что они представляют метастабильные формы марганцевых оксидов, перекристаллизация которых может привести к образованию интерметаллических соединений Cu и Sn.

В марганцевых корках широко распространен барит [4, 22], образующий прожилки и включения (табл. 2). Из сульфидов, наблюдавшихся в корках, наиболее распространены пирротин, пирит, сфалерит (или вюрцит), галенит, халькопирит; встречается пентландит. Присутствуют интерметаллиды вида Cu_xZn_x и самородный цинк (Zn₁₁Fe) (табл. 2).

Редкоземельные минералы представлены церианитом (рис. 6, *e*, табл. 3, сп. 10/30), редкоземельными фосфатами (монацит?). Встречаются железо-цериевые гидроксиды состава Ce₆Fe₅MnO₁₃·nH₂O (рис. 6, *ж*, табл. 3, сп. 13/16, 14/16). Иттрий в изученных корках не обнаруживает связи с лантаноидами и входит в оксиды циркония (бадделеит). В значительном количестве зерен оксидов циркония содержание иттрия достигает трети от содержания Zr (иттриевый бадделеит?) и присутствует Hf (табл. 3).

В брекчиевом слое Мп-корки 2069-2/2а впервые установлены частицы медистого золота. Состав частиц золота меняется в узких пределах (табл. 4). Размер частиц варьирует от доли микрон до нескольких микрон, но встречаются и крупные ограненные кристаллы размером до 10–12 мкм (рис. 2, ж; рис. 6, 3). Золото заключено в крупных обломках (до 2 мм) манганита, а заключающий его частицы матрикс часто имеет бернесситовый (или рансьеитовый) состав. Из других самородных элементов в изученных образцах присутствуют железо, никель, свинец и серебро.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В отличие от океанических Fe-Mn корок и конкреций, окраинно-морские гидротермальные ЖМО считаются не имеющими серьезного экономического значения из-за низких содержаний Co, Cu, Ni, Pt и РЗЭ, несмотря на более высокие содержания в них Mn (до 55 %), растущие спрос и цены на Mn на глобальном рынке [56]. Повышающими экономический потенциал гидротермальных ЖМО считаются их простой (вернадит-бёрнессит-тодорокитовый) минеральный состав, позволяющий дешевую переработку марганцевых руд и возможные перспективы на извлечение других редких металлов (Li, Mo, V, Cr), содержания которых могут приближаться к промышленно значимым. Содержание микроэлементов в Мп-корках зависит от типов пород, выщелачиваемых на глубине гидротермальными флюидами, и от типа осадка, минерализуемого оксидами марганца [56].

	Формула, минерал	$Mn_{0.62}Na_{0.10}Mg_{0.06}Ca_{0.04}K_{0.02}$	Fe _{1.83} O ₄ Якобсит?	$(Mn_{0.50}Na_{0.11}Mg_{0.05}Ca_{0.04})Fe_{2.05}O_4$	H_2O $Rkohcum^2$	(Fet 7% Millo acSilo and lo at Cao at	(1 21./8.1110.092-0.022 10.01 200.01 Κοιοι) 1 0203	remaining Lemanum	$(Fe_{1.98}Mn_{0.08}Ca_{0.01})O_3$	Γe mamum	$(Fe_{2.94}Mn_{0.13}Tb_{0.04})O_4$	Магнетит	$(Fe_{3.03}Mn_{0.11}Tb_{0.03})O_4$	Магнетит	$(Fe_{1.89}Mn_{0.12}Na_{0.04}Tb_{0.03}\ Ca_{0.02})O_3$	Γe матит	$\mathrm{Mn}_{0.67}\mathrm{Na}_{0.18}\mathrm{Mg}_{0.08}\mathrm{Ca}_{0.03}\mathrm{K}_{0.02}$	$\mathrm{Fe}_{1.73}\mathrm{O}_4$	Якобсит?	$(Fe_{2.76}Mn_{0.27}Na_{0.07}Mg_{0.05}Ca_{0.02})O_4$	Магнетит	$(Fe_{1.46}Ti_{0.24}Mn_{0.17}Si_{0.02})O_3$	Титаногематит	$(Fe_{2.70}Ti_{0.45}Mn_{0.31}Si_{0.04})O_4$.	21120 Титаномагнетит	Pb _{1.02} Mn _{0.22} Al _{0.02} O	Массикот	$(Na_{0.11}Mg_{0.09}K_{0.04}Ca_{0.03})Pb_{1.09}$	Keetcenum: PbMnO ₃ (OH)	$(Na_{0.17}Mg_{0.09}K_{0.03}Ca_{0.07})Pb_{0.95}$	Mn _{0.95} O ₂ (OH,Cl)	Квенселит	$SrTiMn_{2,15}Na_{0,35}Mg_{0,25}Ca_{0,13}$	K _{0.09} (OH) ₁₃ Cl _{0.06}	\sim SrTiMn ₂ (OH) ₁₃	$Sr_{0.98}TiMn_{0.88}Na_{0.14}Mg_{0.07}$	${ m Ca}_{0.06}{ m K}_{0.02}{ m (OH)}_{8}{ m Cl}_{0.03}{ m \sim SrTiMn}{ m (OH)}_{8}$	$Mn_{1.01}Ca_{0.36}Ta_{2.58}O_{6}$	Манганотанталит
	Σ	89.90		92.80		100.31	10.001		98.92		100.13		98.68		100.06		91.38			96.82		96.94		86.97		100.54		93.72		88.14			99.42			103.66		104.90	
	$^{\mathrm{PP}}$																									88.51	45.10	39.55	23.93	30.24		21.05							
	Та																																					77.40	25.92
	ЧТ										2.43	0.52	1.87	0.41	2.82	0.58																							
	Sr																																18.30		5.69	27.72	8.71		
	Fe	44.33	27.34	50.12	30.25	64.92	7/10	36.26	66.94	39.02	68.20	41.38	68.44	42.28	63.53	37.12	43.17		25.85	63.03	38.49	52.27	29.78	51.53	36.02														
иды	Mn	14.88	9.33	11.90	7.30	3.20	01.0	1.82	2.63	1.56	2.91	1.79	2.51	1.58	3.83	2.27	15.76		9.59	6.15	3.82	5.96	3.45	5.88	4.18	5.11	9.82	39.55	23.93	30.24		21.05	23.99		11.90	15.70	7.86	9.20 10.15	10.15
O_{KC}	Τi																					7.74	4.94	7.32	5.97								9.68		5.51	15.31	8.80		
	Ca	0.62	0.53	0.65	0.54	0.17		0.13	0.24	0.20					0.49	0.40	0.57		0.47	0.34	0.29		,					0.92	0.76	1.73		1.65	1.08		0.74	0.79	0.54	2.37	3.58
	К	0.36	0.32			0.16	01.0	0.13									0.39		0.34									0.94	0.80	0.60	1	0.59	0.67		0.47	0.28	0.20		
	CI			0.32	0.30												0.19		0.18									0.45	0.42	1.18		1.28	0.46		0.35	0.40	0.31		
	S																											1.51	1.57	0.45		0.54	0.15		0.13	0.38	0.33		
	Si					0.29	1	0.33														0.40	0.45	0.41	0.56														
	Al					0.24	1	0.28																		0.22	0.87								_				
	Мg	0.68	0.76	0.53	0.73												0.89		1.22	0.50	0.70							1.42	1.93	1.26		1.98	1.23		1.38	0.52	0.59		
	Na	1.03	1.55	1.32	1.94										0.52	0.73	1.89		2.75	0.64	0.96							1.72	2.49	2.24		3.73	1.65		1.95	1.04	1.24		
	0	27.75	59.72	27.96	58.93	31.32	10.10	61.06	29.11	59.22	26.59	56.32	25.85	55.74	28.87	58.89	28.52		59.60	26.16	55.75	30.87	61.38	21.83	53.27	6.70	44.20	31.56	65.58	27.14		64.88	42.21		71.89	41.53	71.43	15.93	60.35
	%	Bec.	AT.	Bec.	AT.	Bec.		AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.		AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.		AT.	Bec.		AT.	Bec.	AT.	Bec.	AT.
	Сп.	1/03		2/03		25/03	0001		5/14		4/20		5/20		6/20		7/30			11/30		1/05/10		0/05/10		8/02		15/13		2/20			1/02			6/02		10/02	

микрозондового анализа.
данным
ЭВ ПО
з минералов-акцессорие
состан
Химический
Таблица 2.

65

	$^{(4)}O_5Cl_{0.11}S_{0.05}$	Mn_2O_5	${}^{t}Cl_{0.01}S_{0.04})$		${}_{00}\mathrm{Cl}_{0.01}\mathrm{S}_{0.007}$		$i_{0.04}O_5Cl_{0.64}S_{0.09}$		${}_{5}\mathbf{S}_{0.04}$) ${}_{\Sigma=I.52}$		$0.08 \mathrm{SiO} \cdot nH_2 \mathrm{O}$		$^{5}S_{0.006}CI_{0.10}$		Cl _{0.10} S _{0.02} ·3H ₂ O	$0_4 \cdot H_2O$	$Cl_{0.4}S_{0.05} \cdot nH_2O$			Минерал	Пирротин		Пирротин		Пирротин		Пирит		Халькопирит		Сфалерит		Сфалерит		Пентландит	
Формула, минерал	$(Cu^{2+}_{1.30}Zn^{2+}_{0.69})_{1.99}(Mn_{1.66}Mg_{0.21}Ca_{0.06}K_{0.0})$	Zn-креднерит? $\sim (Cu,Zn)_2$	$Zn_{0.93}(Mn_{1.18}Mg_{0.12}Ca_{0.05}K_{0.04})O$	Femeponum?	$(Cu_{0.65}Sn_{0.18}Mn_{0.20}Ca_{0.02}Si_{0.02})O_{1.}$	Тенорит?	$Cu_{1.89}Sn_{0.27}Mn_{0.74}Fe_{0.11}Mg_{0.15}Ca_{0.05}.S$		$(Cu_{1.00}Sn_{0.36}Mn_{0.15})_{\Sigma=I.5I}(O_{1.32}Cl_{0.1})$	Тенорит?	$0.92Cu_2Sn_{0.61}Mn_{1.05}Mg_{0.15}Ca_{0.12}O_5Cl_{0.06}S_{0.15}Ca_{0.12}O_5Cl_{0.06}S_{0.12}O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O_5O$		$(Cu_{0.72}Sn_{0.17}Mn_{0.09}Fe_{0.01}Si_{0.01})O_{0.9}$	Тенорит?	$Zn_{0.84}(Mn_{1.55}Mg_{0.12}Ca_{0.10}K_{0.04}Si_{0.02})O_4$	$Iudpozemepoлum, \sim ZnMn_2C$	$Cu_{0.99}Sn_{0.33}Mn_{1.00}Mg_{0.12}Ca_{0.11}Si_{0.07}O_{2}$			Формула	Mn _{0.04})S		$\mathrm{Fe}_{0.88}\mathrm{S}$	κc : MnO(OH) ₂ + SiO ₂ $\cdot nH_2O$	$(Fe_{0.82}Ni_{003})S$	κc : Mn(OH) ₅ + SiO ₂	$({ m Fe}_{0.95}{ m Mn}_{0.05}{ m Na}_{0.02}){ m S}_2$		$Cu_{1.03}Fe_{0.99}S_2$	κc : MnO _{1.9} + SiO ₂ $\cdot nH_2O$	$(\mathrm{Zn}_{0.65}\mathrm{Fe}_{0.24}\mathrm{Mn}_{0.06})_{0.95}\mathrm{S}$		$\mathrm{n}_{0.80}\mathrm{Fe}_{0.12}\mathrm{Mn}_{0.02}\mathrm{Cu}_{002} ight)_{0.96}\mathrm{S}$	kc: MnO	$(Fe_{0.47}Ni_{0.40})S$	κc : (Mn, Al, Si) _{3.87} O _{5.6}
∇	97.02		96.65		103.87		98.76		98.07		87.99		102.91		80.00		93.01				$(Fe_{0.83})$			матрі		матрі				матрі			(Z	матрі		матрі
Sn					23.67	8.34	10.05	2.97	29.44	11.89	17.49	6.23	23.12	8.29			13.59	4.03	191	Σ	98.84		97.00		99.47		100.81		94.39		100.15		97.13		95.40	
Zn	13.94	7.56	29.81	14.65											20.27	12.41			сульфап	Zn											6.58	3.26	1.88	8.30		
Cu	25.65	14.31			46.83	30.80	38.12	21.03	43.77	33.03	30.72	20.43	51.11	34.23			22.07	12.22	фиды и	Cu									8.82	0.48	4	3	.10 5	.83 3		
Fe							1.89	1.19					0.63	0.48					Суль	Ni					.92	.31			5	0			1	0	3.82	6.09
Mn	28.22	18.21	31.54	18.44	12.35	9.40	12.95	8.26	5.55	4.84	13.89	10.69	5.41	4.20	31.38	22.87	20.8	13.33	-	Fe	99.9	4.23	2.77	9.11	2.69 1	7.90 1	4.31	1.38	4.42	9.71	4.78	2.35	.40	.53	6.44 2	8.78 1
Ca	0.70	0.62	1.00	0.80	0.75	0.78	0.64	0.56			1.19	1.26			1.42	1.42	1.56	1.37		Mn	8 5	1	5 5	8.	0 5	8	+2 4	5 3	4	1	3 1	1 1	3 6	3 5	12 2	0
К	0.56	0.51	0.79	0.65											0.56	0.57			-) 2.7	5.2	5 4.6	1 3.4	2.7	0 1.5	1 2.4	5 1.7	5.7.5	4 6.5	5 3.4	7 2.5	5 4.5	4.3	1 3.3	2.4
CI	1.16	1.16	0.22	0.20	0.39	0.46	7.26	7.18	3.90	5.28	0.53	0.63	4.00	4.80	1.34	1.51	4.93	4.90		S	39.4	53.5	34.5	44.6	37.13	46.5	53.7	66.2	28.2	39.7	35.3	51.4	31.7:	47.7	32.1	39.7
s	0.48	0.53	0.59	0.59	0.27	0.35	0.93	1.02	0.82	1.23	0.24	0.31	1.00	1.42	0.28	0.35	0.57	0.63		Si			0.26	0.39	0.34	0.49			0.28	0.45					0.63	0.89
Si					0.59	0.88	0.31	0.39			1.76	2.65	0.31	0.48	0.18	0.26	0.65	0.82		Al															0.40	0.58
Mg	.55	25	.47	.94	.79	.36	.15	.66			.87	.51			.03	.70	.98	.41		Na							0.36	0.63								
0	4.77]	4.87	1.24 1	2.73	7.24 (7.64]	5.44 1	5.74]	4.59	3.73	1.31 (6.29	7.33	6.10	3.54 1	8.91	7.86 (1.30		0			4.80	12.41	4.71	11.82			4.65	13.09			1.07	3.22	8.69	21.53
%	sec. 2	ЧТ. <u>5</u>	lec. 3	\т. 6	lec. 2	\т. 4	lec. 2	\т. 5	sec. 1	\т. 4	lec. 2	NT. 5	sec. 1	\т. 4	sec. 2	NT. 5	lec. 2	\т. 6		%	Bec.	AT.	Bec.	A_{T} .	Bec.	A_{T} .	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.
Сп.	24/02 E	F	25/02 E	F	27/02 E	F	21/03 E	F	26/03 E	F	9/16 E	F	11/16 E	F	1/20 E	Ł	1/30 E	F		Сп.	2/13		42/1/18		3/1/18		20/03		47/1/18		22/02		2/1/18		32/1/18	

Таблица 2. (Продолжение).

Волохин, Михайлик, Михайлик

Минерал	Галенит		Барит		Барит		Барит		Барит				0		H ₂ O			0						Cl _{0.06}			
Формула	$Pb_{1.02}S$	матрикс: Са _{0.90} Мп ₄ O ₁₄ Cl _{0.73}	$(Ba_{1.07}Mn_{0.09}Sr_{0.03})S_{1.09}O_4$		$(Ba_{0.99}Sr_{0.13}Mn_{0.05}Si_{0.02}Ca_{0.02})S_{1.15}O_4$		$(Ba_{0.96}Sr_{0.11})S_{1.09}O_4$	матрикс: Na _{0.07} Ca _{0.04} Mn _{0.22} ·1.3H ₂ O	$(Ba_{0.93}Sr_{0.13})S_{1.12}O_4$	матрикс: Na _{0.05} Ca _{0.02} Mn _{0.04} .0.4H ₂ O		Формула, минерал	$\left (Mn_{1.23}Ti_{0.18}Co_{0.16}Na_{0.13}Ca_{0.11}K_{0.04})W_{1.91}O_4\cdot 3H_2O_{1.01}N$	Тунгомелан	$(Na_{0.05}Ca_{0.08})_{0.13}Mn_{1.00}W_{1.00}O_3.21$	Тунгомелан		Состав минерала / матрик	Zn11Fe	матрикс: Мп _{1.08} О2 [·] nH ₂ O;	Cu _{5.09} Zn ₃	<i>матрикс:</i> (Мп _{1.1} О)	$Cu_{4,76}Zn_3Pb_{0.10}$	<i>матрикс</i> : (Mn ²⁺ _{0.35} Mn ⁴⁺ _{0.5} Mg _{0.14} Ca _{0.05} (O, OH)	Cu ₅ Zn ₃ Pb _{0.15}	матрикс: МпО ₆ ·nH ₂ O	
Σ	87.03		98.57		95.87		92.42		97.21			Σ	91.36		90.22			Σ	93.75		96.66		98.10		90.85		
Ъb	67.03	31.58									иты	M	62.98	24.64	56.44	19.02	плиды	$^{\mathrm{Pb}}$					22	81	26	15	
Ba			57.23	17.06	51.59	15.54	47.68	14.79	51.61	15.05	трфрам	Co	1.68	2.05			грмета	nZ	3	0	2	6	1 3.	7 0.	1 4.	0 1.	
Sr			.88	.41	1.45	2.10	3.50	1.70	1.50	2.06	Bo_{i}	Mn	2.08	5.82	6.12	8.18	Мнт		80.6	78.3	34.9	33.0	30.6	24.5	27.8	23.7	
Mn	.25	.55	98 (.48	7 86.	.73	.30	.33	.77 4	.56		Ti	.53 1	.29 1	1	1		Cu			57.65	56.11	47.25	39.01	45.04	39.50	
Са	0.70 4	1.70	1	1).23 (0.24 0).52 4).56 3).31 (0.31 0		Са	0.81 1	1.45 2	1.04	1.60		Fe	6.36	7.23							
CI	0.50	1.37										К	0.27	0.50				Mn	4.39	5.08	4.87	5.48	7.79	7.44	4.94	5.01	
s	10.15	30.90	13.56	17.31	14.01	18.06	12.65	16.80	14.23	17.77		CI			0.73	1.28		Са					0.30	0.40			
Si					0.26	0.38						S			0.29	0.57		CI					0.35	0.52			
Na							0.61	1.13	0.43	0.75		Na	0.55	1.71	0.85	2.29		Na					0.55	1.19			
0	4.41	26.90	24.91	63.74	24.35	62.94	23.17	61.69	25.36	63.50		0	11.47	51.55	14.74	57.06		0	2.37	9.39	1.29	4.98	18.24	25.72	8.80	30.65	
%	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.		%	Bec.	AT.	Bec.	AT.		%	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	
Сп.	18/1/18		27/03		12/20		5/02		34/02			Сп.	3/20		12/02			Sp.	4/02		16/02		28/02		12/1/18		

Таблица 2. (Окончание).

Минералы в марганцевых образованиях вулкана Беляевского

Марганцевые минералы в Fe-Mn корках вулкана Беляевского более разнообразны, чем считалось ранее. Кроме ранее установленных вернадита, бёрнессита и тодорокита [13, 37], манганита и пиролюзита [66], присутствуют манганозит, квенселит, тунгомелан, манганотанталит и родохрозит. Список акцессорных минералов, кроме ранее отмеченных самородного серебра, сфалерита, халькопирита, пентландита и интерметаллидов Cu-Zn, Cu-Sn и W-Ti-Co [4], может быть дополнен пиритом, пирротином, галенитом, бадделеитом, церианитом, природной латунью (Cu₅Zn₃) и медистым золотом.

В изученных корках наряду с минералами, образующимися в окислительных (пиролюзит, вернадит) и переходных к восстановительным (манганит) условиях, присутствуют кристаллизующиеся в восстановительной среде (родохрозит, сульфиды, интерметаллиды, самородные элементы). Причиной могут быть геохимические неоднородности микросреды и различия физико-химических условий кристаллизации минералов в диагенезе. Брекчиевое строение нижних слоев корок дает основание полагать возможный вынос при извержениях обломков и существенные физико-химические и термодинамические различия процессов минералообразования для обломков и марганцевого цемента.

Пирогенный вулканический материал, несомненно, присутствует в изученных образцах. К нему можно отнести магнетит и титаномагнетит, попавшие вместе с вулканической пылью. Генезис тодорокита неоднозначен. Тодорокит в марганцевых конкрециях рассматривается как минерал, образующийся в раннем диагенезе [52, 63] в щелочной среде при топотактической трансформации термодинамически нестабильного вернадита или триклинного бёрнессита [41]. В колломорфных слоях изученных нами корок тодорокит – минерал диагенетический, а первоначально отлагались водонасыщенные, обогащенные щелочами (Na, K), щелочными землями (Mg, Ca, Ba) и Mn²⁺ аморфные оксигидроксиды марганца. В марганцевых микроконкрециях ядра-зародыши сложены бёрнесситом, а формировавшийся позднее тодорокит образует ламинарно-слоистую оболочку, образование которой периодически прерывалось быстрым накоплением колломорфных слоев, сложенных водонасыщенными оксидами марганца.

Образованию родохрозита способствовали восстановительные условия, создаваемые в металлоносном осадке при бактериальном разложении в осадке мягких тканей планктонных и бентосных организмов [38]. По альтернативной версии, родохрозит мог быть вынесен при извержениях вместе с пирокластическим материалом из миоцен-четвертичного осадочного чехла Центральной котловины. Линзы и желваки кальциевого родохрозита (кутнагорита) присутствуют на соседних территориях в позднемиоцен-плейстоценовых осадках керна скважины ОDP 799 (трог Кита-Ямато). Здесь образование родохрозита предполагается на глубинах 1-80 м ниже поверхности дна за счет ресурса первично седиментационного марганца [64]. По другим авторам [58], он образовался при перекристаллизации под воздействием флюидов ранее отложенных манганокальцитовых слоев. Состав родохрозита скв. 799 укладывается в формульный ряд Mn_{0.68-0.74}Ca_{0.21-0.25}Mg_{0.03-0.05}Fe_{0.01-0.02}CO₃ [58]. Родохрозит в исследованном нами образце корки 2069-2-5 не содержит железа и имеет более марганцовистый и низкокальциевый состав: $Mn_{0.71-0.89}Na_{0.05-0.06}Mg_{0.05-0.06}K_{0.02-0.03}Ca_{0.01-0.02}Ba_{0.01-0.02}Sr_{0.01})CO_3$. Развивающиеся в нем по трещинам спайности бёрнессит и манганит (рис. 4, е), по-видимому, представляют продукты позднего окисления марганца родохрозита.

Аутигенные карбонаты Mn распространены в биоорганических илах глубоководных депрессий современных эпиконтинентальных, окраинных и эвксинных бассейнов [38]. В стратифицированной водной толще распад сапропелевого вещества создает аноксию и индуцирует высокую щелочность придонных вод. Это способствует образованию родохрозита, например, в депрессии Ландсорт Балтийского моря [61]. В корках Красного моря вместе с родохрозитом обнаружены капельки нефти [45]. Родохрозит встречается в Беринговом море [54] и в глубоководных пелагических осадках Тихого океана [8, 17, 44].

Причиной субокислительных и восстановительных условий кристаллизации марганцевых фаз на вулкане Беляевского могло быть вовлечение в низкотемпературный гидротермальный процесс поровых вод глинисто-диатомовых илов, присутствующих в

Рис. 6. Минералы-акцессории в марганцевой корке вулкана Беляевского.

a – микроглобула гематита в бёрнессите в корке 2069-2/2а; δ – пирит в вернадит-бёрнесситовом участке корки 2069-2/2а; s – включения магнетита, гематита и тунгомелана в корке 2069-2/2а; z – оловосодержащий креднерит – Cu₂(Mn, Sn, Ca, Mg, Si, Al)₂(O, OH)₅ в гидроманганозите состава (Na_{0.26} Ca_{0.19} K_{0.07} Cu²⁺_{0.05} Mg_{0.01})Mn²⁺_{2.58} O₃·6H₂O; ∂ – иттриевый бадделеит (Zr_{0.61} Y_{0.19} Hf_{0.008})(O, OH) или Y_{1.03}(Zr_{2.97} Mn_{0.15} Hf_{0.03})O₇ в марганцевом матриксе корки 2069-2/2а; e – церианит (Ce_{0.71} La_{0.31} Pr_{0.07} Nd_{0.005})O₂ в корке 2069-2/2а; ж – железо-цериевый оксид и иттриевый бадделеит в марганцевом матриксе корки 2069-2/2а; 3 – медистое золото в ассоциации с крестовидными двойниками манганита в манганитовом обломке корки 2069-2/2а.

	ав минерала / состав матрикса	.a _{0.22} Nd _{0.17} Pr _{0.05} Th _{0.05})O ₂ um)	c: tg _{0.24} Ca _{0.49} K _{0.11})Mn _{2.69} (OH) ₁₄ .	La _{0.31} Pr _{0.07} Nd _{0.005})O ₂ (церианит)	La _{0.34} Pr _{0.07} Nd _{0.05})O ₂ (церианит) с: lg _{0.48} Ca _{0.40} K _{0.16})Mn _{6.09} Fe _{2.54} O ₁₄ .	La _{0.25} Nd _{0.05} Pr _{0.06})O ₂ (церианит) с: (Na _{0.13} Mg _{0.09} Ca _{0.04})(Fe _{2.1} Mn _{0.7}) сстт)	Ce _{5.88} Fe _{4.97} Mn _{0.99} O ₁₃ .nH ₂ O	5.53Ca _{0.13} Fe _{5.69} Mn _{0.90} O ₁₃ · <i>n</i> H ₂ O			100.27 Монацит /	рансьеит?	91.27 Монацит / рансьешт?	· · · · · · · · · · · · · · · · · · ·	Минерал	Бадделеит	Иттриевый бадделеит	Иттриевый бадделеит	Иттриевый бадделеит	Иттриевый бадделеит	Иттриевый бадделеит	Иттриевый бадделеит
	Coct	(Се _{0.51} L (цериан	матрик (Na _{0.51} N 3H ₂ O	(Ce _{0.71}	(Се _{0.53} матрик (Na _{0.88} N	Се _{0.64} Се _{0.64} Матрик О4 (якоб		Ce		Th	7.00	1.06	$2.14 \\ 0.36$									
	Σ	93.59		96.93	91.82	100.28	83.77	84.16		n Pb	4 1.21	0 0.21	1 2			¹ 40.007)O2	2	$1)O_{2}$	^{10.007})O ₂	$^{1})O_{2}$	₅)O ₂	2
	Th	1.79	0.24							d Sr	3 0.8	5 0.2	4 1.2 8 0.3		іерала	f _{0.01} Ca	f _{0.01})O	${}^{_{ m 04} m Hf}$	^c 0.008C	${}^{33}\mathrm{Hf}_{0.0}$	${}^{2}\mathrm{Hf}_{0.00}$	1 _{0.04})O
	Nd	.14	.89	.37 .16	.86 .99	.80				۲ ۲	8.03	8 1.96	2 8.3 ²) 2.28		гав мин	Y _{0.03} H	${\rm H}_{0.19}{\rm H}_{0}$	²⁸ Mn _{0.(}	n _{0.12} Hf	30Mn 0.0	₈ Mn _{0.0}	Y _{0.28} Mı
901	\mathbf{Pr}	19 4	26 (91 (0 14 (0	03 43 0	80 2 87 C				P	1.93	0.48	2.12		Coci	Mn _{0.11}	$(Zr_{0.61})$	r _{0.83} Y _{0.}	$Y_{0.21}M$	r _{0.88} Y _{0.}	r _{0.82} Y _{0.2}	(Zr _{0.85}
шнәтә	e	4 1.	0	4 4	5 -1	0.2	- 8	~ -	19111	Ce	20.27	5.10	19.63 5.52			$(Zr_{0.82})$		Z)	$(Zr_{0.67})$	Z)	(Z)	
UE X191	C	11.9	2.65	52.0 22.8	29.1 10.3	32.3 10.1	50.6 23.6	48.1 21.9	poc p	La	9.56	2.43	7.99 2.27	u Zr								
емельн	La	5.15	1.15	22.75 10.07	18.71 6.72	12.45 3.94			льные	Mn	3.77	2.42	9.22 6.62	$i\partial_{bl} Y_{l}$	[•]							
редкоз	Fe				.18 .71	.0.05 5.79	7.04 0.00	9.73 2.54	коземе.	Са	2.94	2.59	1.74 1.71	O_{KCI}		95.07	97.87	99.95	98.97	96.70	97.55	93.36
cudbi	Лn	25	46		9 6 3 3 4	2 4	5 0 2	6 1 5 2	Pedi	К			$0.32 \\ 0.32$		Ηf	$1.49 \\ 0.35$	1.25 0.27	1.12 0.27	1.15	$1.17 \\ 0.30$	0.71	
0 ^k	1 I	20.	11.		9.8 8.8	6.4 5.1	3.3 4.0	3.5 3.5	2	CI	0.69	0.68			Zr	45	0	7.5		0 1	0.0	0
	Ç	2.67	2.07		0.47 0.58	0.27 0.29		0.33 0.53	2	s	.52	.57	.40 .49			60.4 27.4	51.2 21.6	55.4 26.2	50.4 22.2	54.7 27.3	54.6 26.2	53.0 26.8
	K	0.57	0.45		0.18 0.23					Ρ	.19 (.73 0	58 (C 32 (C		γ	.91 89	5.96 .93	8.37 .94	5.49 .01	7.93 20	7.95 84	7.04 .87
	CI				0.54 0.75					10	6 11	5 12	8 9.6 2 12		n	10	0	~ ~		6 1	(<u></u> ∞	8 -1 8
	S				$0.34 \\ 0.53$					Al S	0.7	0.9	89 1.0 30 1.5		Μ	5.05 3.81		$1.66 \\ 1.30$	5.27 3.86	1.09 0.91	0.68	1.58 1.33
	Mg	0.81	1.04		0.60 1.23	0.37 0.66				Mg			.37 0. .59 1.		Са).23).23			0.23 0.23			
	Na	1.61	2.18		0.94 2.03	0.48 0.93				Na	38	12	<u>77 (</u> 33 ()		0	95 (25 (47	39 22	38	81 32	11 8	74)1
	0	60.	.13	.85 .78	.53	.33	.77 .32	91 .46	2	C	8 1.	0 2.	6 0. 7 1.	-	<u> </u>	25.5 67.2	29.4 71.1	23.5 63.2	26.3 66.3	21.5 62.2	23. ⁴ 64.(21. 62.5
	%	sc. 36	r. 70	sc. 16 . 64	ес. 20 г. 62	sc. 22 r. 61	sc. 12 r. 52	sc. 12 7. 51	5	%	. 30.1	66.5	. 25.3 62.4	5	%	Bec. AT.	Bec. Ar.	Bec. Ar.	Bec. AT.	Bec. AT.	Bec. AT.	Bec. AT.
	Сп.	14 B¢	A	1/30 B€ A1	(02 B¢ A1	/02 B¢ A1	k/16 Be A1	!/16 B€ A1	4	Эп. 9	02 Bec	A_{T} .	02 Bec AT.		Сп.	//30	(/30	03	113	//02	/02	16

а Беляевского.
рках вулкан
риев в ко
ов-акцессо
минерало
иркониевых
пьных и ц
редкоземе.
i coctab
Химический
Таблица 3.

Волохин, Михайлик, Михайлик

Рис. 7. Графики зависимости элементов в Sn-Cu-содержащих акцессорных минералах вулкана Беляевского (обр. 2069-2/2А).

осадках Японского моря. На это косвенно указывают отмечаемые некоторыми исследователями состав и значительная пористость базальтов, характеризующая высокую флюидонасыщенность исходной магмы [27, 30]. Повышенные щелочность, глиноземистость и титанистость базальтов, высокие концентрации в них литофильных элементов (Rb, Ba, Sr, Zr) и легких лантаноидов позволяют предполагать ассимиляцию магматическими расплавами материала осадочного чехла или пород более древней сиалической коры. Глинистые и биокремнистые илы осадочного чехла котловин Японского моря содержат горизонты (толщиной 3–5 м) отложений, обогащенных органическим веществом (до 5–8.5 % С_{огд}) [46, 70]. Бактериальное

	Состав минерала / состав матрикса	$Ag + Ag_2S$ mampukc: Mn ₄ O ₅ ·nH ₂ O	$Ag + Ag_2 S (?)$ <i>Mammuse</i> (Mn,, No Sio,, O Sio,, O.	Ag	матрикс: (Na _{0.48} Mg _{0.33} Ca _{0.29})Мп _{4.18} O ₁₄ ·5H ₂ O	Ag Mar V Mar O KHO	Mumpuxc. (1400.56 $Ca0.38$ 14180.341 $X0.07$)141114.60 $V14$ 0112 V	Ag + Ag2S (?) <i>mampukc</i> : (Na _{1.53} Ca _{0.65} K _{0.51} Mg _{0.45})Mn _{5.92} O ₁₄ · 11H ₂ O	$Ag + Ag_2 S $	<i>mampukc</i> : (IVIn _{0.39} S1 _{0.14} Mg _{0.04})(O,OH) ₂	матрикс: Мп _{0.57} Мg _{0.18} (О,ОН) ₂ ·2H ₂ O	$Au_{0.47}Cu_{0.43}Ag_{0.10}$	$Au_{0.48}Cu_{0.45}Ag_{0.08}$	Mampuke: Ada Co Mo No Si VOODUud O	\144110.62~40.07441 <u>80.061</u> 440.05340.03/\0,011 <u>)</u> 274120 Cho -2A10, 2A0 2 2 2	90'0 Sx 775'0 mx rcc'0m (CC'0m)	$(Mn_{0.72}Ca_{0.10}Mg_{0.05}Si_{0.02}K_{0.01} (O,OH,Cl)_2.nH_2O$	$Cu_{0.56}Au_{0.40}Ag_{0.04}$	матрикс: [(Са _{0,82} М <u>g</u> 0,22S10,08К _{0.05})Мп2,56О9С1 _{0.11} ·3.5H ₂ O	Cu _{0.50} Au _{0.44} Ag 0.06 <i>mampukc</i> : (Nao 9.5Cao 66Mgo 55Ko 13)Mn7 1900	Cu _{0.55} Au _{0.40} Ag 0.05	<i>Mampucc:</i> [(Ca _{0.55} Mg _{0.28} Si _{0.15} Al _{0.12} K _{0.09})Mn4O ₉ Cl _{0.13} ·7H ₂ O	Au _{0.52} Cu _{0.42} Ag 0.06	<i>mampusc:</i> [(Ca ₀₄₃ Na _{0.36} Mg _{0.29} Si _{0.08} K _{0.07}))Mn _{4.12} O ₉ .nH ₂ O	Au _{0.48} Cu _{0.46} Ag _{0.06}	Mampuke: [Mno.27Cao.36.05Sio.4K.0000000050.55	$A_{0.05} - 0.04 - 0.04 - 0.01 - 0.0$	<i>матрикс:</i> (Na ₁ 37Cao 35Mgo 35Si007K007)Мпа 43O14S104	Cu _{0.50} Au _{0.44} Ag _{0.06}	$_{ m Mampusc}$: (Ca $_{0.07}{ m Mg}_{0.07}{ m K}_{0.03}$)Mn $_{0.76}$ (O,OH) $_2{ m Cl}_{0.06}{ m nH}_2{ m O}$
-	Σ	92.28	92.41	88.17		86.58	CL CO	83.73	101.50		97.29	99.63	91.56		90.08			89.78		81.40	83.54		76.86		99.30		100.02		83.72	
	Au											70.36 46.67	31.70	7.36	28.19	6.74		19.36 2.70	61.0	6.88 1.38	19.01	4.46	12.94	2.95	31.17	6.20	18.41	3.02	18.14	3.98
	Ag	74.94 57.32	73.90 46.98	23.65	7.88	19.99 6 72	C/ .0	14.82 5.30	84.04 40.27	49.57	91.17 76.98	8.11 9.83	2.89	1.23	2.08	0.91		1.07	0C.U	$0.47 \\ 0.17$	1.28	0.55	0.88	0.37	2.24	0.81	1.22	0.36	1.50	09.0
	Cu											$21.16 \\ 43.50$	9.59	6.90	11 50	8.52		8.91	0.41	2.47 1.54	8.43	6.13	3.38	2.39	9.66	5.96	5.52	2.81	6.68	4.54
BCKOFO	Mn	12.16 18.25	7.54 9.41	30.05	19.67	31.76	20 07	28.97 20.35	5.46	0.30	2.87 4.76		21.75	18.09	24.26	20.78		25.68	c0.81	40.08 28.87	29.66	24.95	32.50	26.59	23.87	17.03	32.21	18.97	29.54	23.22
ь Беляе	Са			1.51	1.36	1.93	1./2	2.34 2.25					1.82	2.07	2 48	2.91		6.00 5 77	11.0	2.78 2.75	2.78	3.21	2.50	2.80	1.39	1.36	1.71	1.38	1.99	2.14
улкан	K					0.32	0001	1.75							0.79	0.35		0.36	cc.0	0.48 0.49	0.49	0.57	0.42	0.48	0.43	0.43	0.38	0.31	0.70	0.77
pkax B	CI	$0.11 \\ 0.25$		0.48	0.49	0.93	(2.)	2C.0					0.76	0.98	0.79	1.04		0.74	0.80	$1.18 \\ 1.32$	0.62	0.80	0.64	0.81	0.63	0.70	0.62	0.56	1.43	1.74
BЫX KC	S	0.78 2.01	0.98 1 90	0.35	0.39	0.20	0000	99.0 1.19	0.26	70.0															3.28	4.01	4.43	4.47		
рганце	Si		0.29 0.71	-					1.22	C/.7			0.50	0.81	95.0	0.61		0.41	00.0	$0.31 \\ 0.43$	0.55	0.91	0.32	0.51	0.98	1.36	0.27	0.31		
ы в ма	Al																				0.43	0.74								
еталл	Mg		0.40 1 12	1.04	1.54	1.05	00.1	0.97 1.54	0.44	1.14	0.41 1,53		0.88	1.65	0.75	1.44		0.96	cc.1	$1.29 \\ 2.10$	0.92	1.76	1.03	1.90	0.85	1.37	1.04	1.38	1.20	2.13
цные м	Na			1.75	2.74	2.22		/.3/ 12.37					1.19	2.37						2.68 4.62			1.60	3.12			4.56	6.42		
лагоро	0	4.30 22.17	9.30 39.86	29.34	65.94	28.18	20.01	19.97 48.15	10.08	59.95	2.94 16.74		20.49	58.55	19 27	56.70		26.30	60.00	22.77 56.33	19.36	55.92	20.67	58.07	24.81	60.77	29.67	60.00	22.56	60.89
ta 4. E	%	Bec. AT.	Bec. AT	Bec.	AT.	Bec.	D22	Bec. AT.	Bec.	AT.	Bec. AT.	Bec. AT.	Bec.	AT.	Bec	AT.		Bec.	AT.	Bec. AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.	Bec.	AT.
Таблиі	Сп.	1/5/18	12/30	15/30		22/30	11/03	14/03	3/13		32/02	1/13	3/14		6/14	100		8/14		10/14	11/14		12/14		6/13		10/13		19/02	

72

Волохин, Михайлик, Михайлик

разложение органического вещества вероятно могло способствовать насыщению поровых вод углекислотой, сероводородом, углеводородами (метаном и др.) и обогащать их растворенным марганцем и микроэлементами. Известно, что содержание растворенного Мп в аноксических водах современных бассейнов в десятки тысяч раз может превышать таковое в аэрируемых морских водах [29, 34]. А органическое вещество и фракции битумоидов, содержащиеся в биокремнистых илах, могли быть источником микроэлементов и благородных металлов, как показано на примере изучения углеродистых силицитов триаса Сихотэ-Алиня [9, 10, 11]. Залегающие в толщах мезозойских силицитов стратиформные марганцевые отложения Сихотэ-Алиня содержат также медистое золото, а Мп-корки меловых жильных брекчий – церианит, палладий и платину [12].

Марганцевые минералы корок вулкана Беляевского сформированы последовательностью процессов: излиянием богатых марганцем растворов и коагуляцией коллоидов с высаживанием гелеподобных аморфных масс. Диагенетическая раскристаллизация аморфных оксигидроксидов марганца, сопровождаемая отгонкой части щелочных и щелочноземельных элементов, приводила к образованию в субокислительных условиях и при низких температурах тодорокита и бёрнессита.

Марганцевые акцессории (квенселит, гетеролит, гидрогетеролит, креднерит, манганотанталит), по-видимому, являются побочным продуктом диагенетической раскристаллизации марганцевых гидроксидов, локально обогащенных Pb, Zn, Cu и W. Неравномерное распределение органического вещества и локальные различия состава металлоносных илов, вероятно, создавали микроочаги с условиями, благоприятными для кристаллизации сульфидов металлов, самородных элементов и интерметаллидов.

ЗАКЛЮЧЕНИЕ

1. Марганцевые корки вулкана Беляевского в Центральной котловине Японского моря, формировавшиеся в позднеплиоцен-плейстоценовое время, имеют сложное строение и полиминеральный состав (аморфные оксигидроксиды Мп, манганозит, манганит, вернадит, тодорокит, бёрнессит, пиролюзит, мангацохрозит, квенселит, гетеролит, гидрогетеролит, тунгомелан), отражающий изменчивые литодинамические и физико-химические условия их образования и преобразования.

2. Подтвержден и дополнен ранее опубликованный список акцессорных минералов. Кроме ранее отмеченных: самородного Ag, (интерметаллических соединений вида Cu-Zn, Cu-Sn, W-Ti-Co, Fe-Cr), халькопирита, сфалерита, пентландита, барита [4], в корках присутствуют магнетит, титаномагнетит, гематит, титаногематит, пирит, пирротин, галенит, монацит, церианит, бадделеит. Основными концентраторами РЗЭ в изученных Mn-корках являются оксиды (церианит) и фосфаты (монацит?). Тербий концентрируется в пирогенном магнетите и гематите, а концентраторами иттрия и гафния являются оксиды циркония (бадделеит и иттриевый бадделеит).

3. В нижнем брекчиевом слое марганцевой корки вулкана Беляевского впервые установлены многочисленные частицы медистого золота, преобладающие в вулканокластах, представленных манганитом.

4. Ассоциация рудных акцессорных минералов в корках контрастна. Наряду с минералами-оксидами присутствуют минералы, кристаллизующиеся при отсутствии кислорода, в сероводородной или восстановительной среде (сульфиды, интерметаллиды самородные элементы). Причиной могут быть как геохимические неоднородности микросреды, так и различия физико-химических условий их кристаллизации. Брекчиевое строение нижних слоев корок дает основание полагать возможный вынос обломков и существенные физико-химические и термодинамические различия процессов марганцевой и аутигенной минерализации обломков и марганцевого цемента.

5. В составе рудоносных растворов значительную роль, по-видимому, играли вовлеченные в гидротермальный процесс интерстиционные воды миоцен-раннеплейстоценовых глинисто-диатомовых отложений, которые могли служить дополнительным источником растворенного Mn, благородных металлов и ряда микроэлементов и создавать среду формирования минералов.

6. Кристаллизация пиролюзита в трещинах, порах и на поверхности микроконкреций и корок, как и формирование некоторых минералов-оксидов, происходило на поздних стадиях образования верхней оболочки корок в условиях вентиляции придонных вод и высокого окислительного потенциала среды.

Авторы выражают благодарность сотрудникам ДВГИ ДВО РАН Н.В.Груда и Н.И. Екимовой за помощь при проведении аналитических работ. Исследование выполнено при поддержке Российского научного фонда (грант 18-17-00015).

СПИСОК ЛИТЕРАТУРЫ

- Андрущенко П.Ф. Минеральный состав и текстуры железомарганцевых конкреций // Железо-марганцевые конкреции Тихого океана. М.: Наука, 1976. С. 123–167.
- 2. Астахова Н.В., Введенская И.А. Химический состав и гене-

зис железомарганцевых образований подводных вулканов и возвышенностей Японского моря // Вулканология и сейс-мология. 2003. № 6. С. 36–43.

- Астахова Н.В. Благородные, редкоземельные и цветные металлы в железомарганцевых корках подводных вулканов Японского моря // Докл. РАН. 2008. Т. 422, № 4. С. 522–527.
- Астахова Н.В., Колесник О.Н., Съедин В.Т. Цветные, благородные и редкоземельные металлы в железомарганцевых корках и базальтах возвышенности вулкана Беляевского (Японское море) // Вестн. КРАУНЦ. Науки о земле. 2010. № 2. Вып. № 16. С. 152–166.
- Астахова Н.В., Колесник О.Н. Акцессорные металлы в железомарганцевых корках хребта Галагана (Японское море) // Тихоокеан. геология. 2011. Т. 30, № 6. С. 96–108.
- Астахова Н.В., Лопатников Е.А. Состав и парагенетические ассоциации массивного пиролюзита из глубоководной котловины Японского моря // Геология и геофизика. 2016. Т. 57, № 10. С. 1861–1874.
- Бетехтин А.Г. Курс минералогии. М.: Госгеолтехиздат, 1961. 534 с.
- Волков И.И., Логвиненко Н.В., Соколов Е.Г., Леин А.Ю. Родохрозит // Литология и геохимия осадков Тихого океана (транстихоокеанский профиль). М.: Наука, 1979. С. 85–91. (Тр. ГИН АН СССР. Вып. 334).
- 9. Волохин Ю.Г., Иванов В.В. Геохимия и металлоносность углеродистых силицитов триаса Сихотэ-Алиня // Литология и полез. ископаемые. 2007. № 4. С. 406–425.
- Волохин Ю.Г., Карабцов А.А. Благородные металлы в углеродистых кремнях триаса Сихотэ-Алиня // Докл. АН. 2009. Т. 426, № 1. С. 84–89.
- 11. Волохин Ю.Г., Карабцов А.А. Минералы в углеродистых силицитах триаса Сихотэ-Алиня // Литология и полез. ископаемые. 2016. № 5. С. 465–484.
- Волохин Ю.Г., Карабцов А.А., Устинов А.Ю. Марганцевая минерализация в мезозойских кремнистых отложениях Сихотэ-Алиня и Наданьхада-Алиня // Тихоокеан. геология. 2019. Т. 38, № 1. С. 32–52.
- Горшков А.И., Березовская В.В., Батурин Г.Н., Сивцов А.В. Природа железо-марганцевых корок с подводных гор Японского моря // Океанология. 1992. Т. 32, № 3. С. 542–549.
- 14. Костов И. Минералогия. М.: МИР, 1971. 584 с.
- Леликов Е.П., Емельянова Т. А., Съедин В.Т. и др. Новые данные по радиоизотопному датированию вулканитов Охотского и Японского морей // Тихоокеан. геология. 2001. Т. 20, № 5. С. 118–122.
- Леликов Е.П., Емельянова Т. А. Вулканогенные комплексы Охотского и Японского морей (сравнительный анализ) // Океанология. 2007. Т. 47, № 2. С. 294–303.
- 17. Логвиненко Н.В., Волков И.И., Соколов У.Г. Родохрозит в глубоководных осадках Тихого океана // Докл. АН СССР. 1972. Т. 203, № 1. С. 204–207.
- Минералы. Справочник. Т. 2. Вып. 2. Простые окислы. М.: Наука, 1965. 343 с.
- Минералы. Справочник. Т. 2. Вып. 3. Сложные окислы. М.: Наука, 1967. 675 с.
- Минералогическая энциклопедия / Под ред. К. Фрея. Л.: Недра, 1985. 512 с.
- 21. Михайлик П.Е., Ханчук А.И. Железомарганцевые корки с

подводных вулканов задуговых бассейнов – новый генетический тип месторождений галлия // Докл. АН СССР. 2011. Т. 439, № 4. С. 520–522.

- 22. Михайлик П.Е., Михайлик Е.В., Зарубина Н.В, Баринов Н.Н., Съедин В.Т., Леликов Е.П. Вещественный состав и распределение РЗЭ в железомарганцевых корках подводных возвышенностей Беляевского и Медведева (Японское море) // Тихоокеан. геология. 2014. Т. 33, № 5. С. 3–16.
- 23. Михайлик П.Е., Михайлик Е.В., Зарубина Н.В., Блохин М.Г. Распределение редкоземельных элементов и иттрия в гидротермально-осадочных железомарганцевых корках Японского моря по результатам фазового анализа // Геология и геофизика. 2017. Т. 58, № 12. С. 1928–1943.
- 24. Можеровский А.В., Грамм-Осипов Л.М., Волкова Т.И., Можеровская Л.В. Минералогические особенности железомарганцевых образований Японского моря // Новые данные по геологии западной части Тихого океана. Владивосток: ДВО АН СССР, 1989. С. 135–139.
- 25. Можеровский А.В. Аутигенные минералы мезо-кайнозойских вулканогенно-осадочных комплексов дна Японского моря: Дис. ... канд. геол.-минер. наук. Владивосток: ДВГИ ДВО РАН, 1995. 22 с.
- Никандров А.С. Ва-Мп-минералы донных отложений озера Большое Миассово (Южный Урал) // Онтогения, филогения, система минералогии. Миасс (Челябинская область, Россия). 2015. С. 146–149.
- 27. Прокудин В.Г., Съедин В.Т., Валитов М.Г., Медведев С.Н. Центральная котловина Японского моря: история изучения и тектоника // Вестн. КРАУНЦ. Науки о Земле. 2018. № 4. Вып. 40. С. 1–22.
- Пущин И.К., Берсенев И.И., Берсенев Ю.И., Леликов Е.П., Терехов Е.П. О находке железомарганцевых конкреций в северо-западной части Японского моря // Геология окраинных морей Тихого океана. Владивосток: ДВНЦ АН СССР, 1975. Т. 7. С. 94–95.
- Сапожников Д.Г. Возможные источники металлов при образовании марганцевых месторождений // Марганцевое рудообразование на территории СССР. М.: Наука, 1984. С. 4–13.
- 30. Свининников А.И., Съедин В. Т. Физические свойства пород кайнозойских вулканогенных комплексов Японского моря // Тихоокеан. геология. 1984. № 3. С. 7–15.
- Семенов Е.И. Минералогический справочник. М.: ГЕОС, 2002. 214 с.
- 32. Скорнякова Н.С., Батурин Г.Н., Гурвич Е.Г. и др. Железомарганцевые корки и конкреции Японского моря // Докл. АН СССР. 1987. Т. 293, № 2. С. 430–434.
- 33. Съедин В.Т., Емельянова Т.А. Вулканические комплексы Японского и Охотского морей на основе радиоизотопного датирования (по данным драгирования) / Вулканизм и геодинамика: Материалы III-го Всерос. симпоз. по вулканологии и палеовулканологии в г. Улан-Удэ). Улан-Удэ: Бурят. НЦ СО РАН, 2006. Т. 2. С. 343–347.
- Холодов В.Н. О роли сероводородных бассейнов в осадочном рудообразовании // Литология и полез. ископаемые. 2002. № 5. С. 451–473.
- 35. Цой И.Б., Карнаух В.Н., Леликов Е.П. Наименование подводных морфоструктур Японского моря история и

современные проблемы // Океанология. 2013. Т.53, № 6. С. 800–812.

- Чухров Ф.В., Горшков А.И., Дриц В.А. Гипергенные окислы марганца. М.: Наука, 1989. 208 с.
- Штеренберг Л.Е., Александрова В.А., Габлина И.Ф., Леликов Е.П., Сивцов А.В., Степанец М.И. Состав и строение марганцевых корок Японского моря // Тихоокеан. геология. 1986. № 1. С. 125–128.
- Юдович Я.Э., Кетрис М.П. Геохимия марганца. Сыктывкар: ИГ Коми НЦ УрО РАН, 2014. 540 с.
- 39. Bardossy G., Brindley G. Rancieite associated with karstic bauxite deposit // Amer. Miner. 1978. V. 63. P. 762–767.
- Bau M., Schmidt K., Koschinsky A., Hein J., Kuhn T., Usui A. Discriminating between different genetic types of marine ferromanganese crusts and nodules based on rare earth elements and yttrium // Chem. Geol. 2014. V. 381. P. 1–9.
- Bodeï S., Manseau A., Geoffroy N., Baronnet A., Buatier M. Formation of todorokite from vernadite in Ni-rich hemipelagic sediments // Geochim. Cosmochim. Acta. 2007, V. 71. P. 5698–5716.
- Brown F.N., Pabst A., Sawer D.L. Birnessite on colemanite at Boron, California // Amer. Mineral. 1971. V. 56. P. 1057–1064.
- Chukchrov F.V., Gorshkov A.I., Rudnitskaya E.S., Beresovskaya V.V., Sivtsov A.V. Manganese minerals in clays: a review // Clay and Clay Minerals. 1980. V. 28. N 5. P. 346–354.
- Coleman M., Fleet A., Donson P. Preliminary studies of manganese-rich carbonate nodules from Leg 68, Site 503, equatorial Pacific // Init. Repts. Deep-Sea Drill. Project. 1982. V. 68. P. 481–489.
- Dekov V.M., Scholten J.C., Botz R., Gabre-Schönberg C.-D., Stoffer P. Fe-Mn-(hydr)oxide – carbonate crusts from the Kebrit Deep, Red Sea: Precipitation at the seawater/brine redoxcline // Mar. Geol. 2007. V. 236. 95–119.
- 46. Föllmi K.B., Cramp A., Föllmi K.B., Alexandrovich J.M. et al. Dark-light rhythms in the sediments of the Japan Sea: preliminary results from Site 798, with some additional results from sites 797 and 799 // Proc. ODP. Sci. Results. 1992. V. 127/128. Pt. I. P. 599–576.
- Frenzel J. The manganese ore minerals // Geology and geochemistry of manganese / I.M. Varentsov, Gy. Grassely (eds.). Schweizerbartsche Verlagsbuchhandlung, Stuttgart, 1980, V. 1. P. 25–157.
- Frondel O., Mervin O.B., Ito J. New data on birnessite and hollandite // Amer. Miner. 1960. V. 45. P. 871–845.
- 49. Glasby G.P. The mineralogy of manganese nodules from a range of marine environments // Mar. Geol. 1972. V. 13. P. 57–72.
- Glasby G.P., Stüben D., Jeschke G., Stoffers P., Garbe-Schönberg C.D. A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot // Geochim. Cosmochim. Acta. 1997. 61. P. 4583–4597.
- Gutzmer J., Beukes N.J. Mineralogy and mineral chemistry of oxide facies manganese ores of the Postmasburg manganese field, South Africa // Miner. Mag. 1997. V. 61. P. 213–231.
- 52. Halbach P., Scherhag C., Hebisch U., Marchig V. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean // Miner. Deposita. 1981. V. 16. P. 59–64.
- 53. Hannington M.D., De Ronde S.E.J., Petersen S. Sea floor

tectonics and submarine hydrothermal systems // Econ. Geol. 100th Anniversary Vol. 2005. P. 111–141.

- Hein, J.R., O'Neil, Jones M.G. Origin of authigenic carbonates in sediments from Bering Sea // Sedimentology. 1979. V. 26, N 5. P. 681–705.
- 55. Hein J.R., Schulz M.S., Dunham R.E., Stern R.J., Bloomer S.H. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific // J. Geophys. Res. 2008. V. 113. B08S14. doi:10.1029/2007JB005432.
- Hein J.R., Whisman S. Resource potential of hydrothermal manganese deposits from global ocean // 28th Goldschmidt Conference, Boston, USA. 2018. Abstract. P. 1305.
- Ingle J.C., Jr. Subsidence of the Japan Sea: stratigraphic evidence from ODP sites and onshore section // Proc. ODP., Sci. Results. 1992. V. 127/128, Pt. 2. P. 1197–1218.
- Johnson J.E., Webb S.M., Ma C., Fischer W.W. Manganese mineralogy and diagenesis in the sedimentary rock record // Geochim. Cosmochim. Acta. 2016. V. 173. P. 210–231.
- Jones L.H.P., Milne A. Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland // Miner. Mag. 1956. V. 31. P. 283–288.
- Koljonen T., Lahermo P., Garlson L. Origin, mineralogy and geochemistry of manganese rocks and ferruginous precipitates found in sand gravel deposits in Finland // Bull. Geol. Soc. Finland. 1976. V. 48. P. 111–135.
- Lepland A., Stevens R.L. Manganese authigenesis in the Landsort Deep, Baltic Sea // Mar. Geol. 1998. V. 151. P. 1–25.
- 62. Manceau A., Lanson M., Geoffroy N. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption, and diffraction // Geochim. Cosmochim. Acta. 2007. V. 71. P. 95–128.
- Marchig V., Halbach, P. Internal structures of manganese nodules related to conditions of sedimentation // Tschermaks. Miner. Petrogr. Mitt. 1982. V. 30. P. 81–110.
- 64. Matsumoto R. Diagenetic dolomite, calcite, rhodochrosite, magnesite, and lansfordite from Site 799, Japan Sea – implication for depositional, environments and the diagenesis of organi-rich sediments // Proc. ODP, Sci. Results. 1992. V. 127/128, Pt. 1. P. 75–98.
- Mikhailik P.E., Miroshnichenko N.V., Lelikov E.P., Barinov N.N. Hydrothermal-sedimentary manganese deposits of submarine volcanoes from the Sea of Japan // Minerals of the Ocean – integrated strategies-2. SPt., 2004. P. 173–175.
- Mikhailik P.E. Ferromanganese crusts of submarine Belyaevsky and Medvedev volcanoes from the Sea of Japan // Water-Rock Interaction / Bullen & Wang (eds). London: Taylor & Francis Group, 2007. P. 523–526.
- Pelleter E., Fouquet Y., Etoubleau J., Cheron S., Labanieh S., Josso P., Bollinger C., Langlade J. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna backarc environment (SW Pacific) // Ore Geol. Rev. 2017. V. 87. P. 126–146.
- Post J.E.P. Manganese oxide minerals: crystal structures and economic and environmental significance // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 3447–3454.
- Richmond W.E., Fleischer M., Mrose M. Studies on manganese oxide minerals. IX. Rancieite // Bull. Soc. Fr. Miner. Cristallog. 1969. V. 92. P. 191–195.

- 70. Stein R., Stax R. Late Cenozoic changes in flux rates and composition of organic carbon at Sites 798 and 799 (Sea of Japan) // Proc. ODP, Sci. Results. 1992. V. 127/128. Pt. I. P. 423–437.
- Straczek J.A., Horren A., Ross M., Warshaw C.M. Studies on manganese mineral oxides. IV. Todorokite // Amer. Miner. 1960. V. 45. P. 1174–1184.

Рекомендована к печати Ю.А. Мартыновым после доработки 16.12.2019 г. принята к печати 21.02.2020 г.

Yu.G. Volokhin, P.E. Mikhailik, E.V. Mikhailik

Minerals in manganese associations of the Belyaev Volcano (the Sea of Japan)

Mineral composition of ferromanganese crusts from the Belyaev Volcano in the Central Basin of the Sea of Japan has been studied. The crusts represent a significant variety of structures and complex polymineral composition. Along with the previously known todorokite, birnessite, manganite, pyrolusite, and vernadite we have firstly determined rhodochrosite, quenselite, manganosite, heterolite, mangantantalite, and tungomelane. A group of accessory minerals is supplemented by magnetite, titanomagnetite, hematite, titanohematite, pyrite, pyrrhotite, galena, monazite, cerianite, and baddeleyite. For the first time a native cuprous gold was recognized in a manganese breccia. The origin of the manganese minerals was caused by low-temperature hydrothermal fluids which were responsible for the metal supply and determined local conditions and periodicity of manganese crusts growing. A possible source of metals and reason of suboxidizing environments of crystallization and source of some manganese (manganite, todorokite, birnessite) and accessory (intermetallics, sulfides, native elements) minerals could be sapropel organic matter of the siliceous-clayey carbonaceous sediments existing in the Cenozoic sediments of the deep basin.

Key words: ferromanganese crust, manganese minerals, REE, noble metals, Belyaev Volcano, the Sea of Japan.