УДК 552.553 (571.6)

ВЫСОКОТЕМПЕРАТУРНЫЕ КОНТАКТОВЫЕ РОГОВИКИ ЛАВКИНСКОГО ИНТРУЗИВНОГО КОМПЛЕКСА СРЕДИННОГО ХРЕБТА КАМЧАТКИ

И.А. Тарарин

ФГБУН Дальневосточный геологический институт ДВО РАН, пр-т 100-лет Владивостоку 159, г. Владивосток, 690022; e-mail: <u>itararin@mail.ru</u>

Поступила в редакцию 20 июля 2015 г.

Приведены детальные минералогические данные по высокотемпературным Opx-Crd-Bt-Ort-Pl-Qtz роговикам пироксен-роговиковой фации контактовых ореолов лавкинского габбро-гранитоидного интрузивного комплекса Срединного хребта Камчатки. Показано, что роговики, отвечающие температуре 830–840°С и давлению около 3–4 кбар, формировались не в результате регионального метаморфизма среднего эоцена исходных отложений колпаковского комплекса, а образовались позднее во внутренних частях контактовых ореолов габбро-гранитоидных интрузивов лавкинского комплекса миоценового возраста за счет Ку-Grt-Bt и Grt-Bt плагиогнейсов и мигматитов амфиболитовой фации метаморфизма.

Ключевые слова: контактовые роговики пироксен-роговиковой фации, лавкинский интрузивный комплекс, Срединный хребет, Камчатка.

Лавкинский интрузивный комплекс представлен интрузивами сложного состава, включающими гранодиориты, кварцевые диориты, диориты, субщелочные диориты, габбро и габбронориты. Обычно центральные части интрузивов сложены амфибол-биотитовыми гранодиоритами, а краевые зоны – диоритами, габброидами и реже габброноритами.

Интрузивные образования лавкинского комплекса широко развиты в пределах Хангарского гранито-гнейсового купола в центральной части Срединного хребта Камчатки. Породы этих интрузивов обнажаются в междуречье Ича-Облуковина, в долинах рек Левый и Правый Кирганик, в среднем течении р. Квахона, на водоразделе рек Средняя Воровская – Правая Коль. Наиболее крупными массивами являются Лавкинский, Кирганикский, Озерновский и Кагнисинский [3–5].

Типичным представителем интрузивов лавкинского комплекса является Лавкинский массив площадью около 60 кв. км, расположенный в истоках рек Платонич, Крутогорова и Квахона (рис. 1). Он прорывает метаморфические породы колпаковского комплекса (возраст пород протолита – конец раннего– поздний мел [7, 12]) и представляет собой крупный шток неправильной формы с глубиной эрозионного среза до 500–700 м [4]. Контакты интрузива с вмещающими породами резкие с ореолами роговиков, с многочисленными ксенолитами и часто осложненные тектоническими нарушениями.

Лавкинский интрузив сложен амфибол-биотитовыми гранодиоритами, кварцевыми диоритами в центральной части, сменяющимися диоритами, субщелочными диоритами, клинопироксен-амфиболовыми габбро и реже габброноритами в краевых зонах массива.

Лавкинский интрузив оказал интенсивное контактовое воздействие на вмещающие кианит-гранатбититовые и гранат-биотитовые плагиогнейсы и мигматиты колпаковского комплекса, обусловив формирование высокотемпературных роговиков мощностью до 50-100 м. В юго-западной части интрузива (рис. 1) прослеживаются реакции прогрессивного преобразования исходных метаморфических пород колпаковского комплекса, метаморфизованных в условиях амфиболитовой фации (t=600-650°C, P_=6-6.5 кбар [8, 9]) в роговики пироксен-роговиковой фации. Во внешних частях ореола в кианит-гранат-биотитовых и гранат-биотитовых мигматизированных плагиогнейсах (при мигматизации кианит замещается андалузитом, а биотит – фибролитом) наблюдается замещение кристаллов биотита мелкими зернами малоглиноземистого ортопироксена (рис. 2, табл. 1,

Рис. 1. Схематическая геологическая карта юго-западной части Лавкинского интрузива (среднее течение р. Квахона).

1, 2 – колпаковский комплекс: гранат-биотитовые и кианит-гранат-биотитовые плагиогнейсы и мигматиты (1), амфиболиты и клинопироксен-амфиболовые основные кристаллические сланцы (2); 3 – гнейсовидные биотитовые и гранат-биотитовые гранитоиды Крутогоровского массива; 4 – синметаморфические кордиерит-биотитовые, гранат-слюдистые граниты и пегматиты; 5, 6 – лавкинский интрузивный комплекс; гранодиориты, диориты, субщелочные кварцевые диориты (5), габбро-нориты краевой фации (6); 7 – ортопироксен-кордиерит-биотит-ортоклазовые роговики; 8 – элементы полосчатости, гнейсовидности; 9 – точки наблюдений. Во врезке – расположение района исследования.

обр. 962/7), образуются мелкие кристаллы кордиерита и появляются антипертиты калинатрового полевого шпата в плагиоклазе. На этой стадии ороговикования плагиогнейсы и мигматиты колпаковского комплекса сохраняют гнейсовидную текстуру исходных пород. Одновременно происходит распад и замещение граната плагиогнейсов, в роговиках внутренних зон ореола гранат неустойчив, является реликтовым минералом, иногда сохраняясь в виде бронированных реликтов в плагиоклазе. Температура начальной стадии формирования ортопироксен-кордиерит-биотитовых роговиков, рассчитанная по ортопироксен-биотитовому геотермометру [2], равна 730–740°С.

С приближением к контактам интрузивов лавкинского комплекса вмещающие плагиогнейсы и их мигматизированные разновидности утрачивают гнейсовидное строение, превращаясь в массивные породы с неравномернозернистой роговиковой структурой

Рис. 2. Замещение биотита мигматизированных плагиогнейсов колпаковского комплекса гиперстеном. Обр. 962/7, среднее течение р. Квахона. Увел. 72.6. Без анализатора.

Рис. 3. Гиперстен-кордиерит-биотитовый роговик. Обр. 503, истоки р. Левый Лунтос. Увел. 46.5. Без анализатора.

(рис. 3). В них формируются все более железистые и более глиноземистые ортопироксены в ассоциации с калинатровым полевым шпатом, кордиеритом и новообразованным биотитом (табл. 1, обр. 506, 3472, 954/13). Конечной минеральной ассоциацией роговиков является парагенезис *Opx-Crd-Bt-Ort-Pl-Qtz*, темноцветные минералы которого отличаются чрезвычайно высокой железистостью (табл. 1). Иногда в кристаллах плагиоклаза сохраняются бронированные реликты граната матаморфических пород. Резкое увеличение железистости и глиноземистости ортопироксена роговиков из внутренних частей контактовых ореолов лавкинского комплекса согласуется с данными экспериментальных исследований системы с участием ортопироксена, кордиерита и кварца [1]. Точки составов ортопироксена и кордиерита изученных роговиков на диаграмме фазового соответствия совпадают с экспериментальным равновесием в системе *Opx-Crd-Qtz* при температуре 800°С и давлении около 3 кбар [1].

Температура образования *Opx-Crd-Bt-Ort-Pl-Qtz* роговиков внутренних частей контактового ореола Лавкинского интрузива, рассчитанная по ортопироксен-биотитовому геотермометру [2], составляет 830–840°С.

Другим примером интрузивов Лавкинского комплекса является небольшой массив, обнажающийся на правобережье истоков р. Левый Лунтос (рис. 4). Этот массив слабо эродирован, и в его составе преобладают оливин-клинопироксен-амфиболовые габбро и габбронориты со шлировыми обособлениями горнблендитов и оливиновых клинопироксенитов. Интрузив пересекается субвертикальной жилой биотит-амфиболовых порфировидных гранодиоритов северо-восточного простирания мощностью около 100 м. Габбро состоят из ортопироксена $Wo_{2-3}En_{68-70}Fs_{28-30}$, клинопироксена $Wo_{42-45}En_{42-45}Fs_{12-13}$, небольшого количества оливина (X_{Mg} =0.734), плагиоклаза Pl_{45-60} и эденитовой роговой обманки (по номенклатуре [13]), биотита, ильменита и магнетита (табл. 2).

Находки высокотемпературных ортопироксенкордиеритовых рогивиковых образований среди метаморфических пород колпаковского комплекса приводили исследователей к заключению о достижении условий гранулитовой фации при региональном метаморфизме исходных отложений [6, 10, 11]. Однако четкая приуроченность *Opx-Crd-Bt-Ort-Pl-Qtz* пород исключительно к контактовым ореолам миоценовых интрузивов лавкинского комплекса, параллельность метаморфических зон ореолов их контактовым поверхностям, возрастание степени метаморфизма (вплоть до магматического замещения исходных плагиогнейсов и мигматитов амфиболитовой фации) по направлению к магматическим телам, реликтовый неравновесный характер граната этих пород не позволяет согласиться с этим заключением. Отмеченные особенности рассматриваемых образований однозначно свидетельствуют, что наиболее высокотемпературные парагенезисы в Срединном хребте Камчатки представлены контактовыми роговиками пироксен-роговикой минеральной фации, формировавшимися значительно позднее регионального метаморфизма среднего эоцена (около 55 млн лет назад) [7, 12] исходных вулканогенно-терригенных отложений колпаковского комплекса, возникая в контактовых ореолах массивов габброидного состава лавкинского комплекса миоцена.

Компо-				00	jp. 506					Oбp.	962/7		Uop. 3472
нент	Порода	Opx	Crd	Bt	Pl_r	Ort	Ilm	Spl	Opx	Bt	Pl_c	Pl_r	Opx
SiO_2	68.95	51.60	48.26	35.61	63.64	66.58	0.05	0.00	50.68	35.48	64.63	62.55	46.45
ΓiO_2	0.76	0.17	0.01	4.62	0.00	0.00	51.60	0.05	0.05	5.63	0.00	0.00	0.31
AI_2O_3	14.98	1.23	32.92	13.60	22.23	18.61	0.00	54.09	0.79	15.57	22.86	23.55	2.88
Fe_2O_3	0.29							3.83					
FeO	4.32	35.05	9.38	22.72	0.07	0.04	45.63	33.16	30.34	17.79	0.07	0.19	38.89
MnO	0.11	0.61	0.20	0.10	0.00	0.00	0.54	0.20	0.50	0.06	00.00	0.00	0.54
MgO	1.98	13.03	7.50	8.81	0.00	0.00	0.42	3.85	17.48	11.92	0.00	0.00	9.85
CaO	1.76	0.14	0.01	0.04	4.62	0.39	0.00	0.00	0.16	0.00	3.86	5.18	0.17
Na_2O	2.92	0.00	0.05	0.12	9.56	3.77	0.00	0.00	00.00	0.10	8.12	7.92	0.04
K_2O	2.33	0.00	0.01	9.28	0.41	11.15	0.00	0.00	0.00	9.90	0.79	0.27	0.00
Сумма	99.40^{1}	101.83	98.34	94.90	100.53	100.54	98.24	95.18	100.00	96.45	100.33	99.66	99.13
X_{Mg}	0.436	0.399	0.587	0.408	ı	ı	ı	ı	0.506	0.544	ı	ı	0.31
Y_{An}	ı	ı	ı	ı	0.206	0.019	ı	·	ı	ı	0.198	0.263	
Vo	ı	0.4	ı	ı	ı	ı	ı	·	0.3	ı	ı	ı	0.4
En	ı	39.7	ı	ı		I	ı	ı	50.5	I	ı		31.0
S		59.9	ı	ı	ı	I	ı	ı	49.2	I		ı	68.6
Компо-			Oốn	3472						J6n, 954/13			
нент	Crd_{c}	Crd_r	Bt	Pl_c	Pl_r	laS	Порода	Crd_{c}	Crd_r	Bt	Pl_c	Pl_r	Ort
$5iO_2$	47.27	47.28	33.93	57.96	60.89	0.00	60.90	48.18	48.11	35.26	59.85	60.86	65.49
ſiO ₂	0.00	0.03	3.51	0.00	0.00	0.16	1.05	0.03	0.03	5.45	0.00	0.00	0.00
$\rm Al_{2}O_{3}$	32.58	32.64	16.75	26.74	25.26	56.06 3 20	18.83 4 82	32.23	32.10	15.50	25.49	24.60	19.75
Den Contraction	11 91	17 19	75 50	0 13	0.01	36.80	3 49	11 59	12.06	00 66	0.03	012	0.06
MnO	0.11	0.18	0.07	00.0	0.00	0.20	0.08 0.08	0.16	0.21	0.14	00.0	0.00	0.00
MgO	6.34	6.09	6.90	0.00	0.00	2.23	1.97	6.38	5.86	6.55	0.00	0.00	0.00
CaO	0.02	0.02	0.01	8.16	6.51	0.00	2.06	0.02	0.01	00.00	7.86	6.23	0.21
Na_2O	0.10	0.11	0.14	6.70	7.61	0.00	2.51	0.23	0.23	0.16	6.77	8.04	2.60
$K_2 O$	0.00	0.00	9.41	0.28	0.29	0.00	2.04	0.01	0.01	9.46	0.23	0.23	13.44
Сумма	98.33	98.54	96.42	66.66	100.57	98.65	99.62^{2}	98.83	98.62	95.42	100.23	100.08	101.55
X_{Mg}	0.486	0.470	0.324	ı	ı	0.092	0.311	0.497	0.464	0.338	ı	ı	ı
X_{An}	ı	ı	·	0.395	0.315	ı	ı	ı	ı	I	0.386	0.296	0.011
Wo		ı	ı	ı	·	ı	ı	ı	ı		ı		•
En	ı	ı	ı	ı	ı	ı	·	ı	ı	ı	ı	ı	·
FS	ı	ı	,	,	,		ı	ı		ı	ı	ı	ı

86

Тарарин

Рис. 4. Схематическая геологическая карта истоков р. Левый Лунтос.

I – колпаковский комплекс: гранат-биотитовые и кианит-гранат-биотитовые плагиогнейсы и мигматиты; 2, 3 – лавкинский интрузивный комплекс: габбро и габбронориты (2), амфибол-биотитовые гранодиориты (3); 4 – ортопироксен-кордиерит-биотит-ортоклазовые роговики; 5 – элементы залегания гнейсовидности; 6 – точки наблюдения. Во врезке – расположение района исследования.

Компо-	516-B						596-A		
нент	Ol	Cpx	Hbl	Pl	Ilm	Mt	Opx	Cpx	Hbl
SiO ₂	38.52	52.58	42.83	53.07	Сл.	0.00	53.17	52.78	46.37
TiO ₂	0.07	0.61	3.66	0.00	49.26	4.00	0.23	0.40	1.92
Al_2O_3	0.00	2.58	11.25	30.01	0.09	1.55	0.95	1.82	8.33
Fe_2O_3	-	-	-	-	-	63.79	-	-	-
FeO	24.24	8.06	10.88	0.11	45.53	26.76	17.37	7.61	12.04
MnO	0.38	0.22	0.14	0.00	0.92	0.72	0.48	0.30	0.26
MgO	38.20	15.93	14.49	0.00	4.27	2.37	27.47	15.88	15.51
CaO	0.04	20.39	11.06	12.28	0.01	0.00	1.33	21.60	11.80
Na ₂ O	0.00	0.41	2.45	4.58	0.00	0.00	0.00	0.40	1.52
K ₂ O	0.00	0.01	0.80	0.12	0.00	0.00	0.00	0.02	0.74
Сумма	101.45	100.79	97.56	100.17	99.11	99.19	101.00	100.81	98.49
X_{Mg}	0.734	0.775	0.700	-	-	-	0.732	0.782	0.692
X_{An}	-	-	-	0.593	-	-	-	-	-

Таблица 2. Микрозондовые анализы минералов габброидного массива лавкинского комплекса правобережья истоков р. Левый Лунтос.

Примечание. Ol – оливин, Hbl – роговая обманка, Mt – магнетит, Cpx – крипопироксен, Pl – плагиоклаз, Ilm – ильменит. Анализы пород выполнены методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой на приборе ICP-6500 в Аналитическом центре ДВГИ ДВО РАН, аналитики М.Г. Блохин и Н.В. Зарубина. Анализы минералов выполнены на микроанализаторе "Camebax" В.М. Чубаровым в Институте вулканологии и сейсмологии ДВО РАН (таблица 1 и 2).

Тарарин

Широкое развитие в плагиогнейсах и мигматитах колпаковского комплекса реакций замещения кианита анадалузитом при процессах гранитизации и мигматизации заключительных стадий регионального матаморфизма пород свидетельствуют о том, что внедрение интрузивов лавкинского комплекса и формирование высокотемпературных контактовых роговиков осуществлялось в поле устойчивости андалузита, т.е. при давлении около 3-4 кбар [8].

Сравнение изученных роговиков с аналогичными породами контактового ореола Киглапейтского (Kiglapait) расслоенного интрузива полуострова Лабрадор, кристаллизовавшегося на глубинах, отвечающих давлению 2.2–4.0 кбар [14], показывает полную аналогию состава минералов однотипных минеральных парагенезисов. Это может служить доказательством сходства физико-химических условий метаморфизма в контактовых ореолах Киглапейтского интрузива и массивов лавкинского интрузивного комплекса Срединного хребта Камчатки.

Таким образом, наиболее высокотемпературные *Opx-Crd-Bt-Ort-Pl-Qtz* минеральные ассоциации, отвечающие температуре 830–840°С и давлению около 3–4 кбар, формировались в колпаковском комплексе не в результате регионального метаморфизма исходных образований, а образовались позднее в контактовых ореолах габбро-гранитных интрузивов лавкинского комплекса миоценового возраста за счет гранатбиотитовых и кианит-гранат-биотитовых плагиогнейсов амфиболитовой фации среднего эоцена.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аранович Л.Я., Косякова Н.А. Равновесие кордиерит +кварц. Экспериментальные данные и термодинамика тройного Fe-Mg-Al твердого раствора ортопироксена // Геохимия. 1986. № 8. С. 1181–1202.
- 2. Аранович Л.Я., Лаврентьева И.В., Косякова Н.А. Биотитгранатовый и биотит-ортопироксеновый геотермометры:

калибровка с учетом переменности содержания Al в биотите // Геохимия. 1988. № 5. С. 668–676.

- Геология СССР. Т. ХХХІ. Камчатка, Курильские и Командорские острова. Ч. І. Геологическое описание / Под ред. Г.М. Власова. М.: Недра, 1964. 729 с.
- Государственная геологическая карта Российской Федерации. 1:1 000 000 (третье поколение). Серия Корякско-Курильская. Лист N-57 Петропавловск-Камчатский: Объясн. зап. СПб: Изд-во СПб картогр. ф-ки ВСЕГЕИ, 2006. 376 с.
- Карта полезных ископаемых Камчатской области. 1:500 000 / Под ред. А.Ф. Литвинова, М.Г. Патоки, Б.А. Марковского и др. СПб: ВСЕГЕИ, 1999.
- Марченко А.Ф. О тектонической природе, возрасте и структурном положении метаморфических комплексов Камчатки // Вопросы магматизма и тектоники Дальнего Востока / Под ред. Л.М. Парфенова, В.А. Попеко. Владивосток: ДВНЦ АН СССР, 1975. С. 234–246.
- Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит. Методы трекового датирования и структурного анализа. М.: Наука, 2008. 317 с.
- Тарарин И.А. Гранулиты колпаковской серии Срединного хребта Камчатки – миф или реальность // Петрология. 2008. Т. 16. № 2. С. 234–240.
- Тарарин И.А., Бадрединов З.Г., Чубаров В.М. Петрология и рудоносность метаморфических и магматических комплексов Центральной и Восточной Камчатки. Владивосток: Дальнаука, 2015. 302 с.
- Ханчук А.И. Эволюция древней сиалической коры в островодужных системах восточной Азии. Владивосток: ДВНЦ АН СССР, 1985. 138 с.
- 11. Шульдинер В.И., Высоцкий С.В., Ханчук А.И. Фундамент тихоокеанских активных окраин. М.: Наука, 1987. 208 с.
- Hourigan J.K., Brandon M.T., Soloviev A.V. et al. Eocene arc-continent collision and crustal consolidation in Kamchatka, Russian Far East // Amer. J. Sci. 2009. V. 309. N 5. P. 333–396.
- Leake B.E. Nomenclature of amphiboles // Can. Mineralogist. 1978. V. 16. P. 501–520.
- Speer J.A. Metamorphism of the pelitic rocks of the Snyder group in the contact aureole of the Kiglapait layered intrusion, Labrador: effects of buffering partial pressure of water // Can. J. Earth Sci. 1982. V. 19. P. 1888–1909.

Рекомендована к печати А.В. Колосковым

I.A. Tararin

High-temperature contact hornfels of the Lavkinsky intrusive complex, the Sredinnyi Range, Kamchatka

The paper presents the comprehensive mineralogical data on the high-temperature Opx-Crd-Bt-Ort-Pl-Qtz hornfels of the pyroxene-hornfels facies of contact aureoles of the Lavkinsky gabbro-granitoid intrusive complex of the Sredinnyi Range, Kamchatka. It is shown that the hornfels corresponding to the temperature of 830-840oC and pressure of about 3-4 kbar, resulted not from the Middle Eocene regional metamorphism of the Kolpakovsky complex initial deposits, but originated later in the inner parts of the contact aureoles of the gabbro-granitoid intrusions of the Lavkinsky complex of Miocene age through the Ky-Grt-Bt and Grt-Bt plagiogneisses and migmatites of the metamorphism amphibole facies.

Key words: contact hornfels, pyroxene-hornfels facies, Lavkinsky intrusive complex, Sredinnyi Range, Kamchatka.